SSAT Upper Level Math : How to find a complex fraction

Study concepts, example questions & explanations for SSAT Upper Level Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #72 : Rational Numbers

Simplify:

\displaystyle \frac{\frac{2}{3} + \frac{1}{5}}{\frac{4}{5}}

Possible Answers:

\displaystyle \frac{3}{7}

\displaystyle \frac{13}{12}

\displaystyle \frac{52}{75}

\displaystyle \frac{3}{10}

\displaystyle \frac{1}{5}

Correct answer:

\displaystyle \frac{13}{12}

Explanation:

Add the fractions in the numerator, then divide the sum by the denominator:

\displaystyle \frac{\frac{2}{3} + \frac{1}{5}}{\frac{4}{5}}

\displaystyle =\frac{\frac{2\cdot 5}{3\cdot 5} + \frac{1\cdot 3}{5\cdot 3}}{\frac{4}{5}}

\displaystyle =\frac{\frac{10}{15} + \frac{3}{15}}{\frac{4}{5}}

\displaystyle =\frac{\frac{10+3}{15} }{\frac{4}{5}} = \frac{\frac{13}{15} }{\frac{4}{5}}

\displaystyle = \frac{13}{15} \div \frac{4}{5} = \frac{13}{15} \times \frac{5}{4} = \frac{13}{3} \times \frac{1}{4} =\frac{13}{12}

 

Example Question #1201 : Ssat Upper Level Quantitative (Math)

Simplify:

\displaystyle \frac{\frac{1}{3} + \frac{3}{10}}{\frac{9}{10}}

Possible Answers:

\displaystyle \frac{40}{117}

\displaystyle \frac{2}{3}

\displaystyle \frac{19}{27}

\displaystyle \frac{57}{100}

\displaystyle \frac{1}{27}

Correct answer:

\displaystyle \frac{19}{27}

Explanation:

Simplify the sum in the numerator, then divide by the denominator:

\displaystyle \frac{\frac{1}{3} + \frac{3}{10}}{\frac{9}{10}}

\displaystyle =\frac{\frac{1\cdot 10}{3 \cdot 10} + \frac{3 \cdot 3}{10 \cdot 3}}{\frac{9}{10}}

\displaystyle =\frac{\frac{10}{30} + \frac{9}{30}}{\frac{9}{10}}

\displaystyle =\frac{\frac{10+9}{30} }{\frac{9}{10}} = \frac{\frac{19}{30} }{\frac{9}{10}}

\displaystyle \frac{19}{30} \div \frac{9}{10} = \frac{19}{30}\times \frac{10}{9} = \frac{19}{3}\times \frac{1}{9} = \frac{19}{27}

 

Example Question #1 : How To Find A Complex Fraction

Simplify:

\displaystyle \frac{1\frac{1}{3}}{4 \frac{4}{5}}

Possible Answers:

\displaystyle \frac{5}{18}

\displaystyle \frac{2}{5}

\displaystyle \frac{1}{4}

\displaystyle \frac{4}{15}

\displaystyle \frac{3}{5}

Correct answer:

\displaystyle \frac{5}{18}

Explanation:

Rewrite this as a division problem, then solve:

\displaystyle \frac{1\frac{1}{3}}{4 \frac{4}{5}} = 1\frac{1}{3} \div 4 \frac{4}{5} = \frac{4}{3} \div \frac{24}{5}= \frac{4}{3} \times \frac{5}{24}= \frac{1}{3} \times \frac{5}{6}= \frac{5}{18}

Example Question #2 : How To Find A Complex Fraction

Simplify:

\displaystyle \frac{5}{1\frac{1}{4}}

Possible Answers:

\displaystyle 6

\displaystyle 3 \frac{3}{4}

\displaystyle 4 \frac{1}{2}

\displaystyle 4

\displaystyle 6\frac{1}{4}

Correct answer:

\displaystyle 4

Explanation:

Rewrite this as a division problem, then solve:

\displaystyle \frac{5}{1\frac{1}{4}} = 5 \div 1\frac{1}{4}= \frac{5}{1}\div \frac{5}{4} = \frac{5}{1}\times \frac{4}{5}= \frac{1}{1}\times \frac{4}{1} = 4

Example Question #4 : How To Find A Complex Fraction

Simplify:

\displaystyle \frac{3\frac{4}{5}}{3\frac{1}{2}+2\frac{1}{5}}

Possible Answers:

\displaystyle \frac{5}{8}

\displaystyle \frac{3}{4}

\displaystyle \frac{5}{9}

\displaystyle \frac{2}{3}

\displaystyle \frac{7}{10}

Correct answer:

\displaystyle \frac{2}{3}

Explanation:

\displaystyle \frac{3\frac{4}{5}}{3\frac{1}{2}+2\frac{1}{5}}

\displaystyle =3\frac{4}{5} \div \left ( 3\frac{1}{2}+2\frac{1}{5} \right )

\displaystyle = \frac{19}{5} \div \left ( \frac{7}{2}+ \frac{11}{5} \right )

\displaystyle =\frac{19}{5} \div \left ( \frac{35}{10}+ \frac{22}{10} \right )

\displaystyle =\frac{19}{5} \div \frac{57}{10}

\displaystyle =\frac{19}{5} \times \frac{10}{57}

\displaystyle =\frac{1 }{1} \times \frac{2}{3} = \frac{2}{3}

Example Question #4 : How To Find A Complex Fraction

Simplify:

\displaystyle \frac{3\frac{1}{2}-2\frac{1}{5}}{4\frac{3}{4}}

Possible Answers:

\displaystyle \frac{27}{100}

\displaystyle \frac{9}{23}

The correct answer is not given among the other responses.

\displaystyle \frac{5}{19}

\displaystyle \frac{7}{25}

Correct answer:

The correct answer is not given among the other responses.

Explanation:

\displaystyle \frac{3\frac{1}{2}-2\frac{1}{5}}{4\frac{3}{4}}

\displaystyle = \left ( \frac{7}{2}- \frac{11}{5} \right ) \div \frac{19}{4}

\displaystyle = \left ( \frac{35}{10}- \frac{22}{10} \right ) \times \frac{4}{19}

\displaystyle = \frac{13}{10} \times \frac{4}{19}

\displaystyle = \frac{13}{5} \times \frac{2}{19}

\displaystyle = \frac{26}{95}

This is not among the given responses.

Example Question #81 : Fractions

Simplify:

\displaystyle \frac{3\frac{1}{2}+2\frac{1}{5}}{4\frac{3}{4}}

Possible Answers:

\displaystyle 1\frac{3}{5}

\displaystyle 1\frac{1}{4}

\displaystyle 1\frac{1}{5}

\displaystyle 1\frac{1}{6}

\displaystyle 1\frac{2}{5}

Correct answer:

\displaystyle 1\frac{1}{5}

Explanation:

\displaystyle \frac{3\frac{1}{2}+2\frac{1}{5}}{4\frac{3}{4}}

\displaystyle = \left ( \frac{7}{2}+ \frac{11}{5} \right ) \div \frac{19}{4}

\displaystyle = \left ( \frac{35}{10}+ \frac{22}{10} \right ) \times \frac{4}{19}

\displaystyle = \frac{57}{10} \times \frac{4}{19}

\displaystyle = \frac{3}{5} \times \frac{2}{1}

\displaystyle = \frac{6}{5} = 1\frac{1}{5}

Example Question #4 : How To Find A Complex Fraction

Simplify, writing as a proper fraction.

Possible Answers:

\displaystyle \frac{5}{9}

\displaystyle \frac{2}{5}

\displaystyle \frac{5}{12}

\displaystyle \frac{3}{10}

\displaystyle \frac{7}{12}

Correct answer:

\displaystyle \frac{5}{12}

Explanation:

Remember that that fraction bar is just a division symbol. Rewrite as a division, rewrite those mixed fractions as improper fractions, then rewrite as as a multiplication by the reciprocal of the second fraction.

Learning Tools by Varsity Tutors