Trigonometry : Trigonometric Functions

Study concepts, example questions & explanations for Trigonometry

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Triangles

Rt_triangle_letters

In this figure, if angle \displaystyle c=90^\circ, side \displaystyle X=12, and side \displaystyle Z=8, what is the measure of angle \displaystyle a?

Possible Answers:

\displaystyle 48.2^\circ

\displaystyle 90^\circ

\displaystyle \frac{2}{3}^\circ

\displaystyle 41.8^\circ

Undefined

Correct answer:

\displaystyle 41.8^\circ

Explanation:

Since \displaystyle c=90^\circ, we know we are working with a right triangle.

That means that \displaystyle \sin(\theta)=\frac{\text{opposite}}{\text{hypotenuse}}.

In this problem, that would be:

\displaystyle \sin(a)=\frac{\text{Z}}{\text{X}}

Plug in our given values:

\displaystyle \sin(a)=\frac{8}{12}

\displaystyle \sin(a)=\frac{2}{3}

\displaystyle a=\sin^{-1}(\frac{2}{3})

\displaystyle a=41.8^\circ

Example Question #1 : Trigonometric Functions

If \displaystyle sin^2x+2cos^2x+3(sin\ x)(cos\ x)=3, give the value of \displaystyle cot\ x.

 

 

Possible Answers:

\displaystyle cot\ x=-1\ or\ cot\ x=2

\displaystyle cot\ x=1

\displaystyle cot\ x=2

\displaystyle cot\ x=1\ or\ cot\ x=-2

\displaystyle cot\ x=1\ or\ cot\ x=2

Correct answer:

\displaystyle cot\ x=1\ or\ cot\ x=2

Explanation:

\displaystyle sin^2x+2cos^2x+3(sin\ x)(cos\ x)=3

\displaystyle \Rightarrow sin^2x+(cos^2x+cos^2x)+3(sin\ x)(cos\ x)=3

Use the identity \displaystyle sin^2x+cos^2x=1 .  

\displaystyle \Rightarrow 1+cos^2x+3(sin\ x)(cos\ x)=3\Rightarrow cos^2x+3(sin\ x)(cos\ x)=3-1=2

Now we should divide both sides by \displaystyle sin^2x:

\displaystyle \Rightarrow \frac{cos^2x}{sin^2x}+\frac{3(sin\ x)(cos\ x)}{sin^2x}=\frac{2}{sin^2x}

We can use the identity   \displaystyle \frac{1}{sin^2x}=1+cot^2x.

\displaystyle \Rightarrow cot^2x+3cot\ x=2(1+cot^2x)

\displaystyle \Rightarrow cot^2x+3cot\ x=2+2cot^2x

\displaystyle \Rightarrow 2cot^2x-cot^2x-3cot\ x+2=0

\displaystyle \Rightarrow cot^2x-3cot\ x+2=0

\displaystyle \Rightarrow (cot\ x-1)(cot\ x-2)=0
 

\displaystyle cot\ x-1=0\Rightarrow cot\ x=1

or

\displaystyle cot\ x-2=0\Rightarrow cot\ x=2

 

 

 

Example Question #3 : Trigonometric Functions

If \displaystyle sin\ x+\frac{1}{sin\ x}=2, find the value of \displaystyle sin^5x+sin^7x.

Possible Answers:

\displaystyle 0

\displaystyle -2

\displaystyle 2

\displaystyle -1

\displaystyle 1

Correct answer:

\displaystyle 2

Explanation:

\displaystyle sin\ x+\frac{1}{sin\ x}=2\Rightarrow \frac{sin^2x+1}{sin\ x}=2

\displaystyle \Rightarrow sin^2x+1=2sin\ x

\displaystyle \Rightarrow sin^2x-2sin\ x+1

\displaystyle \Rightarrow (sinx-1)^2=0

\displaystyle \Rightarrow sin\ x-1=0

\displaystyle \Rightarrow sin\ x=1

Therefore, \displaystyle sin^5x+sin^7x=1^5+1^7=1+1=2.

Example Question #1 : Trigonometric Functions

If  \displaystyle x=\frac{\pi}{6}, find the value of  \displaystyle \frac{1+cos\ x}{sin^3x}.

Possible Answers:

\displaystyle -8+4\sqrt{3}

\displaystyle 8+4\sqrt{2}

\displaystyle 8-4\sqrt{3}

\displaystyle 4+4\sqrt{3}

\displaystyle 8+4\sqrt{3}

Correct answer:

\displaystyle 8+4\sqrt{3}

Explanation:

\displaystyle x=\frac{\pi}{6}\Rightarrow \frac{{1+cos\ x}}{}{sin^3x}=\frac{{1+cos\ (\pi/6)}}{sin^3(\pi/6)}=\frac{1+\frac{\sqrt{3}}{2}}{(\frac{1}{2})^3}=4(2+\sqrt{3})=8+4\sqrt{3}

Example Question #5 : Trigonometric Functions

Find the value of the following expression:

\displaystyle sin^2 (\frac{\pi}{15})+\frac{1}{sec^2(\frac{\pi}{15})}

Possible Answers:

\displaystyle 0

\displaystyle -1

\displaystyle 2

\displaystyle 1

\displaystyle -2

Correct answer:

\displaystyle 1

Explanation:

We know that \displaystyle sec\ x= \frac{1}{cos\ x}.
 

\displaystyle sin^2 (\frac{\pi}{15})+\frac{1}{sec^2(\frac{\pi}{15})}=sin^2 (\frac{\pi}{15})+\frac{1}{\frac{1}{cos^2(\frac{\pi}{15})}}=sin^2 (\frac{\pi}{15})+cos^2 (\frac{\pi}{15})=1

Example Question #1 : Trigonometric Functions

If \displaystyle sec\ x=\frac{\sqrt{5}}{2}, give \displaystyle tan\ x:

Possible Answers:

\displaystyle tan\ x=\pm 2

\displaystyle tan\ x=\pm 1

\displaystyle tan\ x=\pm 4

\displaystyle tan\ x=\pm \frac{1}{2}

\displaystyle tan\ x=\pm 3

Correct answer:

\displaystyle tan\ x=\pm \frac{1}{2}

Explanation:

We need to use the identity \displaystyle sec^2x=1+tan^2x:

\displaystyle sec^2x=1+tan^2x\Rightarrow (\frac{\sqrt{5}}2)^2=1+tan^2x

\displaystyle \Rightarrow tan^2x=\frac{5}{4}-1\Rightarrow tan^2x=\frac{1}{4}

\displaystyle \Rightarrow tan\ x=\pm \frac{1}{2}

Example Question #2 : Trigonometric Functions

Give the value of \displaystyle sec\ 26^{\circ} - csc\ 64^{\circ}.

Possible Answers:

\displaystyle 1

\displaystyle 3

\displaystyle 0

\displaystyle 2

\displaystyle 4

Correct answer:

\displaystyle 0

Explanation:

We need to use the identity \displaystyle csc(90^{\circ}-x)=sec\ x:

\displaystyle sec\ 26^{\circ} - csc\ 64^{\circ}=sec\ 26^{\circ} - csc (90-26)^{\circ}=sec\ 26^{\circ} -sec\ 26^{\circ}=0

Example Question #1 : Trigonometric Functions

Find \displaystyle \frac{cos\ 65^{\circ}}{sin\ 25^{\circ}}.

Possible Answers:

\displaystyle 0

\displaystyle sin\ 25^{\circ}

\displaystyle 1

\displaystyle -sin\ 25^{\circ}

\displaystyle -1

Correct answer:

\displaystyle 1

Explanation:

We need to use the identity \displaystyle cos(90^{\circ}-x)=sin\ x:

\displaystyle \frac{cos\ 65^{\circ}}{sin\ 25^{\circ}}=\frac{cos (90-25)^{\circ}}{sin\ 25^{\circ}}=\frac{sin\ 25^{\circ}}{sin\ 25^{\circ}}=1

Example Question #9 : Trigonometric Functions

If \displaystyle cos\ x=A, give \displaystyle cos\ 2x in terms of \displaystyle A.

Possible Answers:

\displaystyle 2A^2+1

\displaystyle 2A^2-1

\displaystyle A+1

\displaystyle A^2-1

\displaystyle A-1

Correct answer:

\displaystyle 2A^2-1

Explanation:

We need to use the identity \displaystyle cos2x=2cos^2x-1.

\displaystyle cos2x=2cos^2x-1=2A^2-1

Example Question #10 : Trigonometric Functions

If \displaystyle cos\ x=\frac{\sqrt{2}}{2},  find \displaystyle cos\ 2x.

Possible Answers:

\displaystyle 1

\displaystyle \frac{\sqrt{2}}{2}

\displaystyle 0

\displaystyle -1

\displaystyle -\frac{\sqrt{2}}{2}

Correct answer:

\displaystyle 0

Explanation:

We need to use the identity \displaystyle cos2x=2cos^2x-1.

\displaystyle cos2x=2cos^2x-1=2(\frac{\sqrt{2}}{2})^2-1=2(\frac{1}{2})-1=1-1=0

Learning Tools by Varsity Tutors