ACT Math : Fractions and Percentage

Study concepts, example questions & explanations for ACT Math

varsity tutors app store varsity tutors android store varsity tutors ibooks store

Example Questions

Example Question #1 : Fractions

\displaystyle \frac{5.5}{10} is equivalent to what percentage?

Possible Answers:

5.5%

4.5%

45%

15%

55%

Correct answer:

55%

Explanation:

Divide the fraction out to get the decimal

5.5 / 10 = 0.55

To find the percentage, shift the decimal point two to the right = 55%

 

Example Question #321 : Arithmetic

Write  \displaystyle \frac{27}{25} as a percent

Possible Answers:

\displaystyle 108\%

\displaystyle 8\%

\displaystyle 93\%

\displaystyle 27\%

\displaystyle 127\%

Correct answer:

\displaystyle 108\%

Explanation:

To find a percent from a fraction you can either divide the number on your calculator and multiply by 100:

\displaystyle 100\cdot\frac{27}{25}=108

or you can just multiply the numerator and denominator by the same number that makes the denominator equal to 100 (because a % is just #/100):

\displaystyle \frac{27}{25}\cdot\frac{4}{4}=\frac{108}{100}

 

Example Question #1 : How To Find Percentage From A Fraction A1

One half of a group of professors is made up of mathematicians, and one fourth of the remaining portion is made up of philosophers. The remaining portion is made up of sociologists. If there are \displaystyle 464 professors in the room, how many are sociologists?

Possible Answers:

\displaystyle 58

\displaystyle 98

\displaystyle 146

\displaystyle 110

\displaystyle 174

Correct answer:

\displaystyle 174

Explanation:

To begin, remember with percentages that "of" means multiplication and "is" means "equals." Now, we know that one fourth of the remaining half are philosophers. This means that he philosophers really are:

\displaystyle \frac{1}{4}*\frac{1}{2}=\frac{1}{8}

So, there are \displaystyle 1-\frac{1}{2}-\frac{1}{8} sociologists as a percentage. This is:


\displaystyle 1-\frac{1}{2}-\frac{1}{8}=\frac{8}{8}-\frac{4}{8}-\frac{1}{8}=\frac{3}{8}

Therefore, \displaystyle \frac{3}{8} of the \displaystyle 464 are sociologists, or:

\displaystyle \frac{3}{8}*464=174 are sociologists.

Example Question #322 : Arithmetic

Convert the following fraction into a percent.

\displaystyle \frac{2}{5}

Possible Answers:

\displaystyle 36\%

\displaystyle 40\%

\displaystyle 25\%

\displaystyle 20\%

Correct answer:

\displaystyle 40\%

Explanation:

To convert a fraction into a percent, make the denominator 100 and then the numerator will be the percent. Thus,

\displaystyle \frac{2}{5}*\frac{20}{20}=\frac{40}{100}=40\%

 

Example Question #1 : Fractions And Percentage

On a \displaystyle 15,000 acre plot of land, there are \displaystyle 7 acres in which deer live. What percentage of the land does this represent? Round to the nearest hundredth.

Possible Answers:

\displaystyle 0.01\%

\displaystyle 0.25\%

\displaystyle 0.04\%

\displaystyle 0\%

\displaystyle 0.05\%

Correct answer:

\displaystyle 0.05\%

Explanation:

For percentages, it is always easiest to translate into language that uses "is" and "of." "Is" means "equals" and "of" means "multiply." So, we have:

What percentage of \displaystyle 15,000 is \displaystyle 7? This is the same as:

\displaystyle x * 15,000=7

Solving for \displaystyle x, you get:

\displaystyle x=\frac{7}{15000}=0.00046666666667

Now, as a percent, this is equal to:

\displaystyle 0.00046666666667 * 100= 0.046666666667\%

Rounding to the nearest hundredth, you have \displaystyle 0.05\%.

Example Question #2 : Fractions And Percentage

\displaystyle X is \displaystyle 8\frac{1}{3} \% of \displaystyle Y, which is 35% of \displaystyle Z. All three are positive integers. In which range does the smallest possible value of \displaystyle X+Y+Z fall?

Possible Answers:

Between 600 and 700

Between 500 and 600

Between 700 and 800

Between 300 and 400

Between 400 and 500

Correct answer:

Between 300 and 400

Explanation:

\displaystyle Y  is 35% of \displaystyle Z, so \displaystyle Y = \frac{35}{100}Z = \frac{7}{20}Z

\displaystyle X is \displaystyle 8\frac{1}{3} \% of \displaystyle Y, so \displaystyle X = \frac{8\frac{1}{3}}{100}Y = \frac{8\frac{1}{3}\times 3}{100 \times 3}Y = \frac{25}{300 }Y = \frac{1}{12}Y.

Consequently, 

\displaystyle X = \frac{1}{12}Y = \frac{1}{12} \cdot \frac{7}{20}Z = \frac{7}{240}Z

The smallest integer \displaystyle Z can be is 240. If this happens, 

\displaystyle Y = \frac{7}{20}Z = \frac{7}{20} \cdot 240 = 84

\displaystyle X = \frac{7}{240} \cdot 240 = 7

Their sum is

\displaystyle X + Y + Z = 7 + 84 + 240 = 331

The correct choice is that the sum is between 300 and 400.

Example Question #1 : Fractions And Percentage

\displaystyle A is \displaystyle 16\frac{2}{3} \% of \displaystyle B and \displaystyle 62\frac{1}{2} \% of \displaystyle C; all are positive integers. Give the smallest possible value of \displaystyle A.

Possible Answers:

\displaystyle 1

\displaystyle 8

\displaystyle 30

\displaystyle 48

\displaystyle 5

Correct answer:

\displaystyle 5

Explanation:

\displaystyle A is \displaystyle 16\frac{2}{3} \% of \displaystyle B and \displaystyle 62\frac{1}{2} \% of \displaystyle C, so 

\displaystyle A = \frac{16\frac{2}{3} }{100}B = \frac{16\frac{2}{3}\cdot 3 }{100 \cdot 3}B = \frac{50}{300}B = \frac{1}{6} B,

so \displaystyle B = 6A.

\displaystyle A = \frac{62\frac{1}{2} }{100}C = \frac{62\frac{1}{2} \cdot 2 }{100 \cdot 2}C= \frac{125}{200}C = \frac{5}{8} C

so \displaystyle C = \frac{8} {5}A

\displaystyle A must be divisible by 5, so the least possible value is 5 itself.

 

Example Question #11 : Fractions

\displaystyle M is \displaystyle 7\frac{1}{2} \% of \displaystyle N. Which of the following expressions is equal to \displaystyle N?

Possible Answers:

None of the other responses gives a correct answer.

\displaystyle \frac{2M}{15}

\displaystyle \frac{3M}{40}

\displaystyle \frac{15M}{2}

\displaystyle \frac{40M}{3}

Correct answer:

\displaystyle \frac{40M}{3}

Explanation:

\displaystyle M is \displaystyle 7\frac{1}{2} \% of \displaystyle N, so

\displaystyle M = \frac{7\frac{1}{2}}{100} \cdot N = \frac{7\frac{1}{2} \cdot 2}{100\cdot 2} \cdot N = \frac{15}{200} N = \frac{3}{40} N

\displaystyle N = \frac{40}{3}M = \frac{40M}{3}

 

Example Question #1 : Fractions And Percentage

.

\displaystyle M is \displaystyle 15 \frac{5}{8} \% of \displaystyle N, which is 80% of \displaystyle P. What percent of \displaystyle M is \displaystyle P?

Possible Answers:

\displaystyle 12\frac{1}{2} \%

 \displaystyle 5\frac{3}{25} \%

\displaystyle 19\frac{17}{32} \%

\displaystyle 8 \%

The correct answer is not given among the other responses. 

Correct answer:

The correct answer is not given among the other responses. 

Explanation:

\displaystyle N is 80% of \displaystyle P, so \displaystyle N = \frac{80 }{100}P = \frac{4}{5}P.

Consequently, \displaystyle P = \frac{5}{4}N

\displaystyle M is \displaystyle 15 \frac{5}{8} \% of \displaystyle N, so \displaystyle M = \frac{15 \frac{5}{8} }{100} N = \frac{15 \frac{5}{8} \cdot 8 }{100\cdot 8} N = \frac{5 }{32} N

Consequently, \displaystyle N = \frac{32} {5 }M.

\displaystyle P = \frac{5}{4} \cdot\frac{32} {5 }M = \frac{32}{4}M = 8M, so 

\displaystyle Pis 800% of \displaystyle M. This is not one of the choices.

Example Question #11 : Fractions

\displaystyle M is \displaystyle 22\frac{1}{2} \% of \displaystyle N

\displaystyle \frac{2}{M} is what percent of \displaystyle \frac{5}{N} ?

Possible Answers:

\displaystyle 3,600\%

The correct answer is not given among the other responses.

\displaystyle 177 \frac{7}{9} \%

\displaystyle 277\frac{7}{9} \%

\displaystyle 56\frac{1}{4} \%

Correct answer:

\displaystyle 177 \frac{7}{9} \%

Explanation:

\displaystyle M is \displaystyle 22\frac{1}{2} \% of \displaystyle N, so 

\displaystyle M = \frac{22\frac{1}{2}}{100} N= \frac{22\frac{1}{2}\cdot 2}{100\cdot 2} N= \frac{45}{200 } N= \frac{9}{40} N=\frac{9N}{40},

so 

\displaystyle \frac{1}{M} = \frac{40}{9N}

and 

\displaystyle \frac{2}{M} = \frac{80}{9N}

The question can be rewritten as

\displaystyle \frac{80}{9N} is what percent of \displaystyle \frac{5}{N} ?

The answer is 

\displaystyle \frac{\frac{80}{9N}}{\frac{5}{N}} \times 100 \%

\displaystyle =\left ( \frac{80}{9N} \div \frac{5}{N}} \right ) \times 100 \%

\displaystyle =\left ( \frac{80}{9N} \cdot \frac{N}{5} \right ) \times 100 \%

\displaystyle = \frac{16}{9 } \times 100 \%

\displaystyle = 177 \frac{7}{9} \%

 

Learning Tools by Varsity Tutors