Advanced Geometry : Trapezoids

Study concepts, example questions & explanations for Advanced Geometry

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Trapezoids

Which of the following shapes is a trapezoid?

Shapes

Possible Answers:

\displaystyle B, D

\displaystyle C

\displaystyle C, D

\displaystyle None

\displaystyle B, C, D

Correct answer:

\displaystyle B, D

Explanation:

A trapezoid is a four-sided shape with straight sides that has a pair of opposite parallel sides. The other sides may or may not be parallel. A square and a rectangle are both considered trapezoids.

Example Question #2 : How To Find The Area Of A Trapezoid

What is the area of the following trapezoid?

Trapezoid

Possible Answers:

\displaystyle 32m^2

\displaystyle 36m^2

\displaystyle 24m^2

\displaystyle 40m^2

\displaystyle 80m^2

Correct answer:

\displaystyle 36m^2

Explanation:

The formula for the area of a trapezoid is:

\displaystyle A = \frac{1}{2} (b_{1} + b_{2})(h),

where \displaystyle b_{1} is the value of the top base, \displaystyle b_{2} is value of the bottom base, and \displaystyle h is the value of the height.

Plugging in our values, we get:

\displaystyle A = \frac{1}{2} (8\: m + 10\: m)(4\: m)

\displaystyle A = \frac{1}{2} (18\: m)(4\: m)

\displaystyle A = (9\: m)(4\: m) = 36\: m^2

Example Question #3 : Trapezoids

Screen_shot_2015-03-06_at_2.30.09_pm

What is the area of the trapezoid pictured above in square units?

Possible Answers:

\displaystyle 119

\displaystyle 70

\displaystyle 168

\displaystyle 238

Correct answer:

\displaystyle 119

Explanation:

The formula for the area of a trapezoid is the average of the bases times the height,

 \displaystyle A=\frac{b_{1}+b_{2}}{2}h.

Looking at this problem and when the appropriate values are plugged in, the formula yields:

 \displaystyle A=(\frac{10+24}{2})7

\displaystyle A=\frac{34}{2}\cdot 7

\displaystyle A=\frac{238}{2}=119

Example Question #3 : How To Find The Area Of A Trapezoid

Screen_shot_2015-03-06_at_2.44.49_pm

What is the height of the trapezoid pictured above?

Possible Answers:

\displaystyle 11

\displaystyle 13

\displaystyle 9

\displaystyle 10

\displaystyle 12

Correct answer:

\displaystyle 12

Explanation:

To find the height, we must introduce two variables, \displaystyle b_{1}, b_{2}, each representing the bases of the triangles on the outside, so that \displaystyle b_{1}+b_{2}+11=25, b_{1}+b_{2}=14. (Equation 1)

The next step is to set up two Pythagorean Theorems, 

\displaystyle 13^2=b_{1}^2+h^2, 15^2=b_{2}^2+h^2 (Equation 2, 3)

The next step is a substitution from the first equation, 

\displaystyle b_{1}=14-b_{2}, b_{1}^2=196-28b_{2}+b_{2}^2 (Equation 4)

and plugging it in to the second equation, yielding 

\displaystyle 13^2=196-28b_{2}+b_{2}^2+h^2 (Equation 5)

The next step is to substitute from Equation 3 into equation 5, 

\displaystyle h^2=15^2-b_{2}^2\displaystyle 169=196-28b_{2}+b_{2}^2+225-b_{2}^2 which simplifies to

\displaystyle -252=-28b_{2}, b_{2}=9

Once we have one of the bases, just plug into the Pythagorean Theorem, \displaystyle 225=81+h^2, 144=h^2, h=12

Example Question #4 : Trapezoids

A isosceles trapezoid with sides \displaystyle 10\displaystyle 13\displaystyle 13, and \displaystyle 20 has a height of \displaystyle 12, what is the area?

Possible Answers:

\displaystyle 180

\displaystyle 160

\displaystyle 138

\displaystyle 194

Correct answer:

\displaystyle 180

Explanation:

An isosceles trapezoid has two sides that are the same length and those are not the bases, so the bases are 10 and 20.

The area of the trapezoid then is:

\displaystyle A=\frac{b_{1}+b_{2}}{2}h=\frac{10+20}{2}12=15 \cdot 12=180

Example Question #5 : Trapezoids

If the height of a trapezoid is \displaystyle 10, bottom base is \displaystyle 20, and the top base is \displaystyle 10, what is the area?

Possible Answers:

\displaystyle 150

\displaystyle 300

\displaystyle 200

\displaystyle 40

\displaystyle 75

Correct answer:

\displaystyle 150

Explanation:

The formula for finding the area of a trapezoid is:

\displaystyle A=\frac{1}{2}(b1+b2)h

Substitute the given values to find the area.

\displaystyle A=\frac{1}{2}(20+10)(10)

\displaystyle A= \frac{1}{2}(30)(10)

\displaystyle A=\frac{1}{2}(300)

\displaystyle A=150

Example Question #6 : Trapezoids

Find the area of a trapezoid with bases of length \displaystyle 12\:cm and \displaystyle 15\:cm and a height of \displaystyle 7\:cm.

Possible Answers:

\displaystyle 52.5\:cm^2

\displaystyle 84\:cm^2

\displaystyle 94.5\:cm^2

\displaystyle 189\:cm^2

\displaystyle 105\:cm^2

Correct answer:

\displaystyle 94.5\:cm^2

Explanation:

The formula for the area of a trapezoid is:

\displaystyle A = \frac{a + b}{2}h

Where \displaystyle a and \displaystyle b are the bases and \displaystyle h is the height. Using this formula and the given values, we get:

Example Question #7 : Trapezoids

Find the area of a trapezoid with bases of \displaystyle 8\:cm and \displaystyle 11\:cm and a height of \displaystyle 14\:cm.

Possible Answers:

\displaystyle 133\:cm^2

\displaystyle 121\:cm^2

\displaystyle 112\:cm^2

\displaystyle 88\:cm^2

\displaystyle 66.5\:cm^2

Correct answer:

\displaystyle 133\:cm^2

Explanation:

The formula for the area of a trapezoid is:

\displaystyle A = \frac{a + b}{2}h

Where \displaystyle a and \displaystyle b are the bases and \displaystyle h is the height. Using this formula and the given values, we get:

Example Question #4 : How To Find The Area Of A Trapezoid

Trapezoid_1

Find the area of the above trapezoid.

Possible Answers:

\displaystyle 195\:units^2

\displaystyle 208\:units^2

\displaystyle 714\:units^2

\displaystyle 315\:units^2

\displaystyle 435\:units^2

Correct answer:

\displaystyle 315\:units^2

Explanation:

The formula for the area of a trapezoid is:

\displaystyle A = \frac{a + b}{2}h

Where \displaystyle a and \displaystyle b are the bases and \displaystyle h is the height. Using this formula and the given values, we get:

Example Question #8 : Trapezoids

Trapezoid_2

Find the area of the above trapezoid.

Possible Answers:

\displaystyle 50\:units^2

\displaystyle 28\:units^2

\displaystyle 40\:units^2

\displaystyle 20\:units^2

\displaystyle 35\:units^2

Correct answer:

\displaystyle 28\:units^2

Explanation:

The formula for the area of a trapezoid is:

\displaystyle A = \frac{a + b}{2}h

Where \displaystyle a and \displaystyle b are the bases and \displaystyle h is the height. Using this formula and the given values, we get:

\displaystyle A = \frac{4\:units + 10\:units}{2}\left ( 4\:units\right ) = 28\:units^2

Learning Tools by Varsity Tutors