Algebra 1 : How to use FOIL in the distributive property

Study concepts, example questions & explanations for Algebra 1

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : How To Use Foil In The Distributive Property

What is the equation that has the following solutions?  \displaystyle x=5,-8

Possible Answers:

\displaystyle x^{2}+13x-40

\displaystyle x^{2}-3x+40

\displaystyle x^{2}+3x-40

\displaystyle x^{2}+5x-60

Correct answer:

\displaystyle x^{2}+3x-40

Explanation:

This is a FOIL-ing problem. First, set up the numbers in a form we can use to create the function.

Take the opposite sign of each of the numbers and place them in this format. \displaystyle (x-5)(x+8)

Multiply the \displaystyle x in the first parentheses by the \displaystyle x and 8 in the second parentheses respectively to get \displaystyle x^{2}+8x

Multiply the \displaystyle -5 in the first parentheses by the \displaystyle x and 8 in the second parentheses as well to give us \displaystyle -5x-40.

Then add them together to get \displaystyle x^{2}+8x-5x-40

Combine like terms to find the answer which is \displaystyle x^{2}+3x-40.

Example Question #2 : Foil

Simplify the following expression.

\displaystyle (3x^{2}-3)(2x^{3}-8)

Possible Answers:

\displaystyle 6x^{6}-6x^{3}-24x^{2}+24

\displaystyle 6x^{5}-30x^{2}+24

\displaystyle 6x^{5}-30x^{2}-24

\displaystyle 6x^{5}-6x^{3}-24x^{2}+24

\displaystyle 6x^{5}-6x^{3}-24x^{2}-24

Correct answer:

\displaystyle 6x^{5}-6x^{3}-24x^{2}+24

Explanation:

Simplify using FOIL method.

Remember that multiplying variables means adding their exponents.

F: \displaystyle 3x^{2}*2x^{3} = 6x^{5}

O: \displaystyle 3x^{2}*(-8) = -24x^{2}

I: \displaystyle -3 *2x^{3}=-6x^{3}

L: \displaystyle -3 *-8= 24

Combine the terms. Note that we cannot simplify further, as the exponents do not match and cannot be combined.

\displaystyle 6x^{5}-6x^{3}-24x^{2}+24

Example Question #1 : Distributive Property

\displaystyle \left ( 3x+2\right )\left ( 2x-5\right )=

Possible Answers:

\displaystyle 6x^{2}+19x+10

\displaystyle 6x^{2}+19x -10

\displaystyle 6x^{2}-11x-10

\displaystyle 6x^{2}+2x-3

\displaystyle 6x^{2}-3x-10

Correct answer:

\displaystyle 6x^{2}-11x-10

Explanation:

\displaystyle \left ( 3x+2\right )\left ( 2x-5\right )= \displaystyle 3x\ast2x+3x\left ( -5\right )+ 2\ast2x+2\left ( -5\right )

\displaystyle 6x^{2}-15x+4x-10\;\;\;=\;\;\;6x^{2}-11x-10

Example Question #1 : How To Use Foil In The Distributive Property

What are the factors of \displaystyle x^{2}+11x+24?

Possible Answers:

\displaystyle (x+11)(x+13)

\displaystyle (x+6)(x+4)

\displaystyle (x+8)(x+4)

\displaystyle (x+8)(x+3)

\displaystyle (x+10)(x+1)

Correct answer:

\displaystyle (x+8)(x+3)

Explanation:

To find the factors, you must determine which of the sets of factors result in the polynomial when multiplied together. Using the FOIL method, a set of factors with the form \displaystyle (x+a)(x+b) will result in \displaystyle x^{2}+ax+bx+ab. Applying this format to the given equation of \displaystyle x^{2}+11x+24\displaystyle a+b must equal 11 and \displaystyle ab must equal 24. The only set that works is \displaystyle (x+8)(x+3).

Example Question #2 : Distributive Property

Expand:

\displaystyle (x+3)(2x-5)

Possible Answers:

\displaystyle 2x^{2}+x-15

\displaystyle 2x^{2}-x+15

\displaystyle x^{2}+2x-15

\displaystyle x^{2}-2x-15

\displaystyle 2x^{2}-2x-15

Correct answer:

\displaystyle 2x^{2}+x-15

Explanation:

If you use the FOIL method, you will multiply each expression individually. So, \displaystyle (x+3)(2x-5) becomes \displaystyle (x*2x)+(x*-5)+(3*2x)+(3*-5), which simplifies to \displaystyle 2x^{2}+x-15.

Example Question #1 : How To Use Foil In The Distributive Property

Simplify the expression below.

\displaystyle x^{2}y(2x + 3y)

Possible Answers:

\displaystyle 4x^{3}y + 5x^{2}y^{2}

\displaystyle 2x^{3}y + 3x^{2}y^{2}

\displaystyle 5x^{2}y + 6x^{2}y^{2}

\displaystyle 3x^{2}y + 4xy^{2}

\displaystyle 2x^{2}y + 3xy^{2}

Correct answer:

\displaystyle 2x^{3}y + 3x^{2}y^{2}

Explanation:

\displaystyle x^{2}y(2x + 3y)

Use the distributive property to simplify the expression.  In general, \displaystyle a(b+c) = ab + ac.

\displaystyle x^{2}y(2x + 3y)=(x^{2}y*2x) + (x^{2}y*3y)

Now we can begin to combine like terms through multiplication.

\displaystyle (x^{2}y*2x) + (x^{2}y*3y)

\displaystyle (2x^{3}y)+(3x^2y^2)

We cannot simplify further.

Example Question #1 : How To Use Foil In The Distributive Property

Multiply the binomials below.

\displaystyle (4x-7)(2x+6)

Possible Answers:

\displaystyle 8x^{2}-42

\displaystyle 8x^{2}-10x-42

\displaystyle 8x^{2}+10x-42

\displaystyle 8x^{2}+38x-42

\displaystyle 8x^{2}-38x-42

Correct answer:

\displaystyle 8x^{2}+10x-42

Explanation:

The FOIL method yields the products below.

First: \displaystyle 4x* 2x=8x^{2}

Outside: \displaystyle 4x* 6=24x

Inside: \displaystyle -7* 2x=-14x

Last: \displaystyle -7* 6=-42

Add these four terms, and combine like terms, to obtain the product of the binomials.

\displaystyle 8x^{2}+24x+(-14x)+(-42)=8x^{2}+10x-42

Example Question #3 : Foil

Factor the expression below.

\displaystyle x^3-3x^2-18x

Possible Answers:

\displaystyle (x^2-6x)(x^2+3x)

\displaystyle x(x-6)(x-3)

\displaystyle x(x+6)(x-3)

\displaystyle x(x-6)(x+3)

Correct answer:

\displaystyle x(x-6)(x+3)

Explanation:

\displaystyle x^3-3x^2-18x

First, factor out an \displaystyle x, since it is present in all terms.

\displaystyle x(x^2-3x-18)

We need two factors that multiply to \displaystyle -18 and add to \displaystyle -3.

\displaystyle -6*3=-18 and \displaystyle -6+3=-3

Our factors are \displaystyle -6 and \displaystyle +3.

\displaystyle x(x-6)(x+3)

We can check our answer using FOIL to get back to the original expression.

First: \displaystyle (x)(x)=x^2

Outside: \displaystyle (x)(3)=3x

Inside: \displaystyle (x)(-6)=-6x

Last: \displaystyle (-6)(3)=18

Add together and combine like terms.

\displaystyle x^2+3x-6x-18=x^2-3x-18

Distribute the \displaystyle x that was factored out first.

\displaystyle x(x^2-3x-18)=x^3-3x^2-18x

Example Question #4 : Distributive Property

Possible Answers:

\displaystyle 2p^{2}+6p+20

\displaystyle 2p^{2}-20p-9

\displaystyle 2p^{2}-p-20

\displaystyle 2p^{2}-14p-20

\displaystyle 2p^{2}-6p-20

Correct answer:

\displaystyle 2p^{2}-6p-20

Explanation:

\displaystyle 2p^{2}-10p+4p-20\;\;\;\;\;\;\;\;2p^{2}-6p-20

Example Question #3 : How To Use Foil In The Distributive Property

Expand:

\displaystyle (x+4)(3x-2)

Possible Answers:

\displaystyle x^{2}+10x-8

\displaystyle 3x^{2}+14x-8

\displaystyle 3x^{2}+10x-8

\displaystyle x^{2}+14x+8

\displaystyle 3x^{2}+10x+8

 

Correct answer:

\displaystyle 3x^{2}+10x-8

Explanation:

To expand \displaystyle (x+4)(3x-2), use the FOIL method, where you multiply each expression individually and take their sum. This will give you

\displaystyle (3x)(x)+(4)(3x)+(x)(-2)+(4)(-2)

or \displaystyle 3x^{2}+10x-8

Learning Tools by Varsity Tutors