Algebra II : Non-Square Radicals

Study concepts, example questions & explanations for Algebra II

varsity tutors app store varsity tutors android store

Example Questions

Example Question #3922 : Algebra Ii

\displaystyle (x^{2})^{\frac{1}{3}}(x^{-2})^{\frac{1}{2}}(x^{4})^{\frac{1}{3}} =

Possible Answers:

\displaystyle 1

\displaystyle x^{\frac{-8}{9}}

\displaystyle x

\displaystyle x^{\frac{4}{3}}

\displaystyle x^{3}

Correct answer:

\displaystyle x

Explanation:

To solve this, remember that when multiplying variables, exponents are added.  When raising a power to a power, exponents are multiplied.  Thus:

\displaystyle (x^{2})^{\frac{1}{3}}(x^{-2})^{\frac{1}{2}}(x^{4})^{\frac{1}{3}} =

\displaystyle x^{\frac{2}{3}}x^{-1}x^{\frac{4}{3}} = x^{\frac{2}{3}-1+\frac{4}{3}} = x

Example Question #22 : Radicals

Simplify by rationalizing the denominator:

\displaystyle \frac{6}{\sqrt[3]{18} }

Possible Answers:

\displaystyle \sqrt[3]{2}

\displaystyle 6 \sqrt[3]{2}

\displaystyle 6 \sqrt[3]{12}

\displaystyle \sqrt[3]{12}

\displaystyle 2 \sqrt[3]{2}

Correct answer:

\displaystyle \sqrt[3]{12}

Explanation:

Since \displaystyle 18 = 2 \cdot 3 ^{2}, we can multiply 18 by \displaystyle 2^{2} \cdot 3 = 12 to yield the lowest possible perfect cube:

\displaystyle 18 \cdot 12 = 216 = 6 ^{3}

Therefore, to rationalize the denominator, we multiply both nuerator and denominator by \displaystyle \sqrt[3]{12} as follows:

\displaystyle \frac{6}{\sqrt[3]{18} }

\displaystyle = \frac{6 \cdot \sqrt[3]{12} }{\sqrt[3]{18} \cdot \sqrt[3]{12} }

\displaystyle = \frac{6 \cdot \sqrt[3]{12} }{\sqrt[3]{18 \cdot 12 } }

\displaystyle = \frac{6 \sqrt[3]{12} }{\sqrt[3]{216 } }

\displaystyle = \frac{6 \sqrt[3]{12} }{6 }

\displaystyle = \sqrt[3]{12}

Example Question #21 : Understanding Radicals

Simplify: \displaystyle \sqrt[3]{120000}

Possible Answers:

\displaystyle 240

\displaystyle 20\sqrt[3]{15}

\displaystyle 25\sqrt[3]{4}

\displaystyle 10\sqrt[3]{120}

\displaystyle 120\sqrt[3]{5}

Correct answer:

\displaystyle 20\sqrt[3]{15}

Explanation:

Begin by getting a prime factor form of the contents of your root.

\displaystyle 120000 = 12 * 10000 = 2^2*3*10^4

Applying some exponent rules makes this even faster:

\displaystyle 10^4 = (2*5)^4=2^45^4

Put this back into your problem:

\displaystyle 2^2*3*2^4*5^4=2^6*3*5^4

Returning to your radical, this gives us:

\displaystyle \sqrt[3]{2^6*3*5^4}

Now, we can factor out \displaystyle 2 sets of \displaystyle 2^3 and \displaystyle 1 set of \displaystyle 5^3.  This gives us:

\displaystyle 2^2*5\sqrt[3]{3*5}=20\sqrt[3]{15}

Example Question #1262 : Mathematical Relationships And Basic Graphs

Simplify:

\displaystyle \sqrt[4]{15625}

Possible Answers:

\displaystyle 5\sqrt{35}

\displaystyle 5\sqrt[4]{5}

\displaystyle 125\sqrt[4]{5}

\displaystyle 125\sqrt{5}

\displaystyle 5\sqrt{5}

Correct answer:

\displaystyle 5\sqrt{5}

Explanation:

Begin by factoring the contents of the radical:

\displaystyle 15625 = 25*625 = 25*25*25=5*5*5*5*5*5=5^6

This gives you:

\displaystyle \sqrt[4]{5^6}

You can take out \displaystyle 1 group of \displaystyle 5^4.  That gives you:

\displaystyle 5\sqrt[4]{5^2}=5\sqrt[4]{25}

Using fractional exponents, we can rewrite this:

\displaystyle 5*5^\frac{2}{4}

Thus, we can reduce it to:

\displaystyle 5*5^\frac{1}{2}

Or:

\displaystyle 5\sqrt{5}

Example Question #2 : Non Square Radicals

Simplify: \displaystyle \sqrt{125}+\sqrt{50}

Possible Answers:

\displaystyle 5\sqrt7

\displaystyle 15\sqrt{10}

\displaystyle 10\sqrt5+10\sqrt2

\displaystyle 10\sqrt{10}

\displaystyle 5\sqrt5+5\sqrt2

Correct answer:

\displaystyle 5\sqrt5+5\sqrt2

Explanation:

To simplify \displaystyle \sqrt{125}+\sqrt{50}, find the common factors of both radicals.

\displaystyle \sqrt{125}= \sqrt{25\cdot5}=\sqrt{25}\cdot \sqrt5=5\sqrt5

\displaystyle \sqrt{50}=\sqrt{25\cdot 2}=\sqrt{25}\cdot \sqrt2=5\sqrt2

Sum the two radicals.

The answer is:  \displaystyle 5\sqrt5+5\sqrt2

Example Question #1 : Non Square Radicals

Simplify:

\displaystyle \sqrt[3]{27x^5y^6}

Possible Answers:

\displaystyle 3xy^2\sqrt[3]{x}

\displaystyle xy^2\sqrt[3]{x^2}

\displaystyle 27xy^2\sqrt[3]{x^2}

\displaystyle 3xy^2\sqrt[3]{x^2}

\displaystyle 3xy\sqrt[3]{x^2}

Correct answer:

\displaystyle 3xy^2\sqrt[3]{x^2}

Explanation:

To take the cube root of the term on the inside of the radical, it is best to start by factoring the inside:

\displaystyle \sqrt[3]{x^3\cdot x^2\cdot y^6\cdot 27}

Now, we can identify three terms on the inside that are cubes:

\displaystyle x^3, y^6, 27

We simply take the cube root of these terms and bring them outside of the radical, leaving what cannot be cubed on the inside of the radical.

\displaystyle x\cdot y^2 \cdot 3 \cdot \sqrt[3]{x^2}

Rewritten, this becomes

\displaystyle 3xy^2\sqrt[3]{x^2}

Example Question #23 : Understanding Radicals

Simplify the radical:  \displaystyle \sqrt{32}\cdot\sqrt{8}

Possible Answers:

\displaystyle 4

\displaystyle 16

\displaystyle 8

\displaystyle 8\sqrt2

\displaystyle 4\sqrt2

Correct answer:

\displaystyle 16

Explanation:

Simplify both radicals by rewriting each of them using common factors.

\displaystyle \sqrt{32} = \sqrt4 \cdot \sqrt{4}\cdot \sqrt{2} = 4\sqrt2

\displaystyle \sqrt{8} = \sqrt4 \cdot \sqrt2 = 2\sqrt2

Multiply the two radicals.

\displaystyle 4\sqrt2\cdot 2\sqrt2 = 4\cdot 2 \cdot 2 = 16

The answer is:  \displaystyle 16

Example Question #2 : Non Square Radicals

Simplify:  \displaystyle -\sqrt{ 120}

Possible Answers:

\displaystyle -2\sqrt{30}

\displaystyle -4\sqrt{15}

\displaystyle -2\sqrt{10}

\displaystyle -6\sqrt{5}

Correct answer:

\displaystyle -2\sqrt{30}

Explanation:

In order to simplify this radical, rewrite the radical using common factors.

\displaystyle -\sqrt{ 120} = -\sqrt{2} \cdot \sqrt{2}\cdot \sqrt{5} \cdot \sqrt{6}

Simplify the square roots.  

\displaystyle -2\cdot \sqrt{5} \cdot \sqrt{6}

Multiply the terms inside the radical.

The answer is:  \displaystyle -2\sqrt{30}

Example Question #1263 : Mathematical Relationships And Basic Graphs

Simplify:  \displaystyle \sqrt{30} \cdot \sqrt{15}

Possible Answers:

\displaystyle 5\sqrt2

\displaystyle 2\sqrt{15}

\displaystyle 15\sqrt2

\displaystyle 3\sqrt{10}

Correct answer:

\displaystyle 15\sqrt2

Explanation:

Break down the two radicals by their factors.

\displaystyle \sqrt{30} \cdot \sqrt{15} = (\sqrt{3}\times\sqrt{2}\times \sqrt{5})\cdot(\sqrt{3}\times \sqrt{5})

A square root of a number that is multiplied by itself is equal to the number inside the radical.

\displaystyle \sqrt{3}\cdot \sqrt{3}=3

\displaystyle \sqrt{5}\cdot \sqrt{5}=5

Simplify the terms in the parentheses.

\displaystyle (\sqrt{3}\times\sqrt{2}\times \sqrt{5})\cdot(\sqrt{3}\times \sqrt{5}) = 3\times 5 \times \sqrt2

The answer is:  \displaystyle 15\sqrt2

Example Question #4 : Non Square Radicals

Simplify, if possible:  \displaystyle 3\sqrt{5}+6\sqrt{50}+ 9\sqrt{500}

Possible Answers:

\displaystyle 30\sqrt5+93\sqrt2

\displaystyle 123\sqrt2

\displaystyle 123\sqrt5

\displaystyle 30\sqrt2+93\sqrt5

Correct answer:

\displaystyle 30\sqrt2+93\sqrt5

Explanation:

The first term is already simplified.  The second and third term will need to be simplified.

Write the common factors of the second radical and simplify.

\displaystyle 6\sqrt{50} =6\sqrt{25\times 2} = 6\sqrt{25}\times \sqrt{2} = 6(5)\sqrt2 = 30\sqrt2

Repeat the process for the third term.

\displaystyle 9\sqrt{500} = 9\sqrt{100\times 5} = 9\sqrt{100}\times \sqrt{5} = 9(10)\sqrt{5} = 90\sqrt5

Rewrite the expression.

\displaystyle 3\sqrt{5}+6\sqrt{50}+ 9\sqrt{500}= 3\sqrt{5}+30\sqrt2+90\sqrt5

Combine like-terms.

The answer is:  \displaystyle 30\sqrt2+93\sqrt5

Learning Tools by Varsity Tutors