Algebra II : Simplifying Radicals

Study concepts, example questions & explanations for Algebra II

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Simplifying Radicals

Simplify the expression:

\displaystyle \frac{3\sqrt[4]{32}}{2\sqrt[4]{162}}

Possible Answers:

\displaystyle 6\sqrt[4]{2}

.\displaystyle \frac{3\sqrt[4]{16}}{2\sqrt[4]{81}}

\displaystyle \frac{3}{2}

\displaystyle \frac{2}{3}

\displaystyle 1

Correct answer:

\displaystyle 1

Explanation:

Use the multiplication property of radicals to split the fourth roots as follows:

\displaystyle \rightarrow \frac{3\sqrt[4]{16}\sqrt[4]{2}}{2\sqrt[4]{81}\sqrt[4]{2}}

Simplify the new roots:

\displaystyle \rightarrow \frac{3(2)\sqrt[4]{2}}{2(3)\sqrt[4]{2}}

\displaystyle \rightarrow \frac{6\sqrt[4]{2}}{6\sqrt[4]{2}}

\displaystyle \rightarrow 1

Example Question #2 : Factoring Radicals

Simplify the expression.

\displaystyle \sqrt{300x^{3}}

Possible Answers:

\displaystyle x\sqrt{300x}

\displaystyle 5x\sqrt{12x}

\displaystyle 10x\sqrt{3x}

\displaystyle 2x\sqrt{75x}

\displaystyle 10\sqrt{3x^{3}}

Correct answer:

\displaystyle 10x\sqrt{3x}

Explanation:

Use the multiplication property of radicals to split the perfect squares as follows:

\displaystyle \sqrt{100}\sqrt{3}\sqrt{x^{2}}\sqrt{x}

Simplify roots,

\displaystyle 10\sqrt{3}\ast x\sqrt{x} = 10x\sqrt{3x}

 

Example Question #3 : Factoring Radicals

Simplify the radical \displaystyle \sqrt{12}.

Possible Answers:

\displaystyle 2\sqrt{3}

\displaystyle 3\sqrt{2}

\displaystyle 4\sqrt{3}

\displaystyle 2\sqrt{6}

None of the other answers

Correct answer:

\displaystyle 2\sqrt{3}

Explanation:

To simplify radicals, we need to factor the expression inside the radical. A radical can only be simplified if one of the factors has a square root that is an integer.

For this problem, we'll first find all of the possible radicals of 12: 1 & 12, 2 & 6, and 3 & 4. Then we look at each factor and determine if any of them has a square root that is an integer. The only one that does is 4, which has a square root of 2. We can rewrite the radical as \displaystyle \sqrt{3\cdot 4} which can also be written as \displaystyle \sqrt{3}\cdot \sqrt{4}. Taking the squareroot of 4, we come to the answer: \displaystyle 2\sqrt{3}.

Example Question #2 : Simplifying Radicals

Simplify the following expression involving radicals by factoring the radicands:

\displaystyle 4\sqrt{75}-2\sqrt{147}+\sqrt{12}

Possible Answers:

\displaystyle 8\sqrt{3}

\displaystyle 20\sqrt{3}+6\sqrt{2}

\displaystyle 8\sqrt{2}+4\sqrt{7}

\displaystyle 6\sqrt{10}

\displaystyle 2\sqrt{5}

Correct answer:

\displaystyle 8\sqrt{3}

Explanation:

In order to simplify each radical, we must find the factors of its radicand that have a whole number as a square root, which will allow us to take the square root of that factor out of the radical. We start by factoring each radicand, looking for any factors that have a neat whole number as a square root:

\displaystyle 4\sqrt{75}-2\sqrt{147}+\sqrt{12}=4\sqrt{3\cdot25}-2\sqrt{3\cdot49}+\sqrt{3\cdot4}

After factoring each radicand, we can see that there is a perfect square in each: 25 in the first, 49 in the second, and 4 in the third. Because these factors are perfect squares, we can easily take their square root out of the radical, which then gets multiplied by the coefficient already in front of the radical:

\displaystyle 4(5\sqrt{3})-2(7\sqrt{3})+(2\sqrt{3})=20\sqrt{3}-14\sqrt{3}+2\sqrt{3}

After simplifying each radical, we're left with the same value of \displaystyle \sqrt{3} in each term, so we can now add all of our like terms together to completely simplify the expression:

\displaystyle 20\sqrt{3}-14\sqrt{3}+2\sqrt{3}=8\sqrt{3}

Example Question #5 : Simplifying Radicals

Simplify the radical expression.

\displaystyle \sqrt[3]{64x^5y^8z^6}

Possible Answers:

\displaystyle 4xy^2z^2\sqrt[3]{x^2y^2}

\displaystyle 4x^2y^2z^2\sqrt[3]{x^2y^2}

\displaystyle 4x^3y^6z^6\sqrt[3]{x^2y^2}

\displaystyle 4xy^2z^2\sqrt{x^2y^2}

\displaystyle 8x^2y^4z^3\sqrt[3]{x}

Correct answer:

\displaystyle 4xy^2z^2\sqrt[3]{x^2y^2}

Explanation:

In order to solve this equation, we must see how many perfect cubes we can simplify in each radical.

\displaystyle \sqrt[3]{64x^5y^8z^6}

First, let's simplify the coefficient under the radical. \displaystyle 64 is the perfect cube of \displaystyle 4. Therefore, we can remove \displaystyle 64 from under the radical, and what we have instead is:

\displaystyle 4\sqrt[3]{x^5y^8z^6}

Now, in order to remove variables from underneath the square root symbol, we need to remove the variables by the cube. Since radicals have the property

\displaystyle \sqrt{x^2}=\sqrt{x}\cdot\sqrt{x}

we can see that

\displaystyle 4\sqrt[3]{x^5y^8z^6}=4\sqrt[3]{x^3x^2y^6y^2z^6}

With the expression in this form, it is much easier to see that we can remove one cube from \displaystyle x, two cubes from \displaystyle y, and two cubes from \displaystyle z, and therefore our solution is:

\displaystyle 4xy^2z^2\sqrt[3]{x^2y^2}

Example Question #2 : Simplifying Radicals

\displaystyle Simplify \;\sqrt{396}

Possible Answers:

\displaystyle 6\sqrt{11}

\displaystyle 11\sqrt{2}

\displaystyle 17\sqrt{2}

\displaystyle 36\sqrt{11}

Correct answer:

\displaystyle 6\sqrt{11}

Explanation:
\(\displaystyle Factor\; 396\; under\; the\; radical\; sign\)\(\displaystyle \sqrt{396}\)  =  \(\displaystyle \sqrt{36\times 11}\)  =  \(\displaystyle \sqrt{6^{2}\times 11}\)

=\(\displaystyle \sqrt{6^2}\sqrt{11}\)
=\(\displaystyle 6\sqrt{11}\)

Example Question #4 : Factoring Radicals

Simplify the radical.

\displaystyle \small \sqrt{128}

Possible Answers:

\displaystyle \small 8\sqrt{132}

Cannot be simplified further.

\displaystyle \small 4\sqrt{32}

\displaystyle \small 4\sqrt2

\displaystyle \small 8\sqrt2

Correct answer:

\displaystyle \small 8\sqrt2

Explanation:

\displaystyle \small \sqrt{128}

Find the factors of 128 to simplify the term.

\displaystyle \small 64*2=128

We can rewrite the expression as the square roots of these factors.

\displaystyle \sqrt{128}=\sqrt{64}*\sqrt{2}

Simplify.

\displaystyle \sqrt{64}*\sqrt{2}=8\sqrt{2}

Example Question #1 : Simplifying Radicals

Simplify the radical.

\displaystyle \small \sqrt{50}

Possible Answers:

\displaystyle \small 5\sqrt2

\displaystyle \small 5

\displaystyle \small 25\sqrt2

\displaystyle \small 10

Correct answer:

\displaystyle \small 5\sqrt2

Explanation:

\displaystyle \small \sqrt{50}

Start by finding factors for the radical term.

\displaystyle \small 25*2=50

We can rewrite the radical using these factors.

\displaystyle \small \sqrt{25}*\sqrt{2}=\sqrt{50}

Simplify the first term.

\displaystyle 5*\sqrt{2}=5\sqrt{2}

Example Question #1 : Simplifying Radicals

Simplify.

\displaystyle \sqrt{x^2+y^2}

Possible Answers:

\displaystyle \sqrt{x}+\sqrt{y}

\displaystyle x+y

\displaystyle 1

\displaystyle xy

\displaystyle \sqrt{x^2+y^2}

Correct answer:

\displaystyle \sqrt{x^2+y^2}

Explanation:

Always work the math under the radical before simplifying. We can't do any math so let's see if it's factorable. This isn't factorable either so the answer is just the problem stated. 

\displaystyle \sqrt{x^2+y^2}\neq x+y If you don't believe it, let \displaystyle x= 2 and \displaystyle y = 3

\displaystyle \sqrt{2^2+3^2}=\sqrt{13}\neq2+3

 

Example Question #1 : Simplifying Radicals

Which of the following statements are always true.

I.\displaystyle \sqrt{a^2+b^2}=a+b

II.\displaystyle \sqrt{a^2}=a

III. The smallest integer in a radicand that generates a plausible, real number and smallest value is 0. 

Possible Answers:

I and II

II and III

III only

I and III

only

Correct answer:

III only

Explanation:

Let's analyze each statement.

I.\displaystyle \sqrt{a^2+b^2}=a+b

Let's try to factor. This isn't factorable so this statement is usually false, NOT ALWAYS true.

\displaystyle \sqrt{a^2+b^2}\neq a+b If you don't believe it, let \displaystyle x= 3 and \displaystyle y = 4

\displaystyle \sqrt{3^2+4^2}=\sqrt{25}=5\neq3+4

The only time this is true is if \displaystyle a or \displaystyle b were \displaystyle 0 and the other variable was a perfect square. 

II. \displaystyle \sqrt{a^2}=a

Let's say \displaystyle a=2\displaystyle \sqrt{2^2}=2 This is very true HOWEVER, what if \displaystyle a = -2\displaystyle \sqrt{(-2)^2}\neq-2. Square roots don't generate negative values. Remember to do the math inside the radicand before simplifying. Only positive values and zero are possible and since there is no restriction on \displaystyle a, all assumptions are based on \displaystyle a being any real number. So we can elminate this statement since question is asking ALWAYS true. 

 

III. The smallest integer in a radicand that generates a plausible, real number and smallest value is 0. 

From the second statement reasoning, "only positive values and zero are possible", this confirms that this statement is always true. Integers are whole numbers found on a number line. Real numbers are numbers found on a number line including all rational numbers (integers that can easily be fractions) and irrational numbers(values that can't be written as fractions). Remember, a negative number in a square root creates imaginary numbers (numbers including \displaystyle i). Even if you decide to say \displaystyle \sqrt{(-1)^2}=1, it doesn't make statement III false. \displaystyle 1 is greater than \displaystyle 0 even though \displaystyle -1 is a smaller integer than \displaystyle 0.

Therefore III only is the correct answer.

Learning Tools by Varsity Tutors