AP Calculus AB : Derivative interpreted as an instantaneous rate of change

Study concepts, example questions & explanations for AP Calculus AB

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Derivative Interpreted As An Instantaneous Rate Of Change

Evaluate the following limit:

\displaystyle \lim_{x\rightarrow 0} (\frac{1-cos2x}{sinx})

Possible Answers:

\displaystyle 2

\displaystyle -1

\displaystyle 1

\displaystyle \infty

\displaystyle 0

Correct answer:

\displaystyle 0

Explanation:

When \displaystyle x approaches 0 both \displaystyle sinx and \displaystyle (1-cos2x) will approach \displaystyle 0. Therefore, L’Hopital’s Rule can be applied here. Take the derivatives of the numerator and denominator and try the limit again:

 

\displaystyle \lim_{x\rightarrow 0} (\frac{1-cos2x}{sinx})= \lim_{x\rightarrow 0} (\frac{2sin2x}{cosx})=\frac{0}{1}=0

Example Question #52 : Concept Of The Derivative

Find the instantaneous rate of change for the function, 

\displaystyle y = 2x^3 - x-4

at the point \displaystyle (-1,-7)

Possible Answers:

\displaystyle 293

\displaystyle 1

\displaystyle 712

\displaystyle -7

\displaystyle 5

Correct answer:

\displaystyle 5

Explanation:

Find the instantaneous rate of change for the function, 

\displaystyle y = 2x^3 - x-4

at the point \displaystyle (-1,-7)

 

1) First compute the derivative of the function, since this will give us the instantaneous rate of change of the function as a function of \displaystyle x

\displaystyle \frac{dy}{dx}=\frac{d}{dx}(2x^3-x-4)

 

\displaystyle \frac{dy}{dx}=\frac{d}{dx}(2x^3)-\frac{d}{dx}(x)-\frac{d}{dx}(4)

 

\displaystyle \frac{dy}{dx}= 6x^2-1

 

2) Now evaluate the derivative at the value \displaystyle x = -1

\displaystyle \frac{dy}{dx}_{|x=-1}= 6(-1)^2-1 = 5

 

Therefore, \displaystyle 5 is the instantaneous rate of change of the function 

\displaystyle y = 2x^3 - x-4 at the point \displaystyle (-1,-7)

 

Example Question #1 : Derivative Interpreted As An Instantaneous Rate Of Change

A particle is traveling in a straight line along the x-axis with position function \displaystyle x(t) = t+\sin(t). What is the instantaneous rate of change in the particle's position at time \displaystyle \pi seconds?

Possible Answers:

\displaystyle \pi+1

\displaystyle 1

\displaystyle \pi

\displaystyle 0

\displaystyle \pi-1

Correct answer:

\displaystyle 0

Explanation:

To find the instantaneous rate of change of the particle at time \displaystyle t=\pi, we have to find the derivative of \displaystyle x(t) and plug \displaystyle \pi into it.

\displaystyle x'(t) :=v(t) = 1+\cos(t).

And

\displaystyle v(\pi) = 1+\cos(\pi) = 1+-1 = 0.

Hence the instantaneous rate of change in position (or just 'velocity') of the particle at \displaystyle t=\pi is \displaystyle 0. (At that very instant, the particle is not moving.) 

Example Question #2 : Derivative Interpreted As An Instantaneous Rate Of Change

Find the function values and as well as the instantaneous rate of change for the function \displaystyle g(x)=x\sin(x) corresponding to the following values of \displaystyle x:

 

 \displaystyle 1)\: \: \: \: \: \: \: x =\frac{\pi}{2}

 

\displaystyle 2)\: \: \: \: \: \: \: x =\frac{\pi}{4}

 

\displaystyle 3)\: \: \: \: \: \: \: x =\pi

Possible Answers:

B2wrng3

 

B2wrng4

 

B2wrng4

Fixedcorrectanswer

B2wrng4

Correct answer:

Fixedcorrectanswer

Explanation:

Find the instantaneous rate of change for the function \displaystyle g(x)=x\sin(x)corresponding to the following values of \displaystyle x:

 

 \displaystyle 1)\: \: \: \: \: \: \: x =\frac{\pi}{2}

 

\displaystyle 2)\: \: \: \: \: \: \: x =\frac{\pi}{4}

 

\displaystyle 3)\: \: \: \: \: \: \: x =\pi

 

 Evaluate the function at each value of \displaystyle x.

\displaystyle g\left(\frac{\pi}{2} \right )=\frac{\pi}{2}sin\left(\frac{\pi}{2} \right )=\frac{\pi}{2}

\displaystyle g\left(\frac{\pi}{4} \right )=\frac{\pi}{4}\sin\left(\frac{\pi}{4} \right )=\frac{\pi}{4}\frac{\sqrt{2}}{2}=\frac{\pi\sqrt{2}}{8}

\displaystyle g(\pi)=\pi \sin(\pi)=0

 

The instantaneous rate of change at any point \displaystyle (x, g(x)) will be given by the derivative at that point. First compute the derivative of the function: 

\displaystyle g(x)=x\sin(x)

Apply the product rule: 

\displaystyle g'(x)=x\frac{d}{dx}\sin(x)+\sin(x)\frac{d}{dx}(x)

\displaystyle = x\cos(x)+\sin(x)

 

Therefore, 

\displaystyle g'(x)=x\cos(x)+\sin(x)

 

Now evaluate the derivative for each given value of \displaystyle x

 \displaystyle 1)\: \: \: \: \: \: \: x =\frac{\pi}{2}\: \: \: \:\rightarrow\: \: \: \:g'\left(\frac{\pi}{2} \right )\: \: =\: \: \frac{\pi}{2}\cos\left(\frac{\pi}{2} \right )+\sin\left(\frac{\pi}{2} \right )\: \:=\:1

 

\displaystyle 2)\: \: \: \: \: \: \: x =\frac{\pi}{4}\: \: \: \:\rightarrow\: \: \: \:g'\left(\frac{\pi}{4} \right )\: \: =\: \: \frac{\pi}{4}\cos\left(\frac{\pi}{4} \right )+\sin\left(\frac{\pi}{4} \right )\: \:=\:\frac{\sqrt{2}}{2}\left(1+\frac{\pi}{4} \right )=\frac{\sqrt{2}}{8}(4+\pi)

 

\displaystyle 3)\: \: \: \: \: \: \: x =\pi\: \: \: \:\rightarrow\: \: \: \:g'(\pi)\: \: =\: \: \pi\cos(\pi) +\sin(\pi) \: \:=\:\pi

 

Therefore, the instantaneous rate of change of the function \displaystyle g(x) at the corresponding values of \displaystyle x are: 

 

 Fixedcorrectanswer

Example Question #3 : Derivative Interpreted As An Instantaneous Rate Of Change

Given that v(t) is the velocity of a particle, find the particle's acceleration when t=3.

\displaystyle v(t)=3t^2+6e^x-15t

Possible Answers:

Not enough information provided

\displaystyle 12.65

\displaystyle 0

\displaystyle 123.5

Correct answer:

\displaystyle 123.5

Explanation:

Given that v(t) is the velocity of a particle, find the particle's acceleration when t=3.

\displaystyle v(t)=3t^2+6e^x-15t

We are given velocity and asked to find acceleration. Our first step should be to find the derivative.

\displaystyle v(t)=3t^2+6e^x-15t

We can use our standard power rule for our 1st and 3rd terms, but we need to remember something else for our second term. Namely, that the derivative of \displaystyle e^x is simply \displaystyle e^x

With that in mind, let;s find v'(t)

\displaystyle v(t)=3t^2+6e^x-15t

\displaystyle v'(t)=6t+6e^x-15

Now, for the final push, we need to find the acceleration when t=3. We do this by plugging in 3 for t and simplifying.

\displaystyle v'(t)=6(3)+6e^3-15=18+120.5-15=123.5

So, our answer is 123.5

Example Question #1 : Derivative Interpreted As An Instantaneous Rate Of Change

\displaystyle \begin{align*}&\text{The position of a particle at a given time is given by the function:}\\&p(t)=6t - sin(\frac{(5\cdot \pi t)}{2}) + 5\\&\text{What is its velocity at time }t=6\text{?}\end{align*}

Possible Answers:

\displaystyle 6.83

\displaystyle 0

\displaystyle 6

\displaystyle 13.85

Correct answer:

\displaystyle 13.85

Explanation:

\displaystyle \begin{align*}&\text{Velocity is the time rate of change of position. In lay terms,}\\&\text{it is an instantaneous measure of speed and direction. However,}\\&\text{going back to that first definition, note that it is a rate,}\\&\text{and whenever the term rate is used, derivatives should come}\\&\text{to mind. The rate of change of position with respect to time}\\&\text{is the derivative of position with respect to time:}\\&v(t)=\frac{dp(t)}{dt}\\&\text{Taking the derivative of our position function }6t - sin(\frac{(5\cdot \pi t)}{2}) + 5\\&\text{We find the velocity function: }6 -\frac{ (5\cdot \pi cos(\frac{(5\cdot \pi t)}{2}))}{2}\\&\text{Plugging in values we then get:}\\&v(6)=6 -\frac{ (5\cdot \pi cos(\frac{(5\cdot \pi (6))}{2}))}{2}\\&v(6)=13.85\end{align*}

Example Question #2 : Derivative Interpreted As An Instantaneous Rate Of Change

\displaystyle \begin{align*}&\text{The position of a particle at a given time is given by the function:}\\&p(t)=- 3t - cos(5\cdot \pi t) - sin(\frac{(7\cdot \pi t)}{2}) - 5\\&\text{What is its velocity at time }t=3\text{?}\end{align*}

Possible Answers:

\displaystyle -4.67

\displaystyle -3

\displaystyle -125.84

\displaystyle -2.67

Correct answer:

\displaystyle -3

Explanation:

\displaystyle \begin{align*}&\text{Velocity is the time rate of change of position. In lay terms,}\\&\text{it is an instantaneous measure of speed and direction. However,}\\&\text{going back to that first definition, note that it is a rate,}\\&\text{and whenever the term rate is used, derivatives should come}\\&\text{to mind. The rate of change of position with respect to time}\\&\text{is the derivative of position with respect to time:}\\&v(t)=\frac{dp(t)}{dt}\\&\text{Taking the derivative of our position function, }- 3t - cos(5\cdot \pi t) - sin(\frac{(7\cdot \pi t)}{2}) - 5\\&\text{We find the velocity function: }5\cdot \pi sin(5\cdot \pi t) -\frac{ (7\cdot \pi cos(\frac{(7\cdot \pi t)}{2}))}{2}- 3\\&\text{Plugging in our value of time we then get:}\\&v(3)=5\cdot \pi sin(5\cdot \pi (3)) -\frac{ (7\cdot \pi cos(\frac{(7\cdot \pi (3))}{2}))}{2}- 3\\&v(3)=-3\end{align*}

Example Question #3 : Derivative Interpreted As An Instantaneous Rate Of Change

\displaystyle \begin{align*}&\text{The position of a particle at a given time is given by the function:}\\&p(t)=cos(\frac{(9\cdot \pi t)}{2}) - 2t + cos(\frac{(17\cdot \pi t)}{2}) - 1\\&\text{What is its velocity at time }t=1\text{?}\end{align*}

Possible Answers:

\displaystyle 0

\displaystyle -3

\displaystyle -42.84

\displaystyle -4

Correct answer:

\displaystyle -42.84

Explanation:

\displaystyle \begin{align*}&\text{Velocity is the time rate of change of position. In lay terms,}\\&\text{it is an instantaneous measure of speed and direction. However,}\\&\text{going back to that first definition, note that it is a rate,}\\&\text{and whenever the term rate is used, derivatives should come}\\&\text{to mind. The rate of change of position with respect to time}\\&\text{is the derivative of position with respect to time:}\\&v(t)=\frac{dp(t)}{dt}\\&\text{Taking the derivative of our position function, }cos(\frac{(9\cdot \pi t)}{2}) - 2t + cos(\frac{(17\cdot \pi t)}{2}) - 1\\&\text{We find the velocity function: }-\frac{ (9\cdot \pi sin(\frac{(9\cdot \pi t)}{2}))}{2}-\frac{ (17\cdot \pi sin(\frac{(17\cdot \pi t)}{2}))}{2}- 2\\&\text{Plugging in our value of time we then get:}\\&v(1)=-\frac{ (9\cdot \pi sin(\frac{(9\cdot \pi (1))}{2}))}{2}-\frac{ (17\cdot \pi sin(\frac{(17\cdot \pi (1))}{2}))}{2}- 2\\&v(1)=-42.84\end{align*}

Example Question #9 : Derivative Interpreted As An Instantaneous Rate Of Change

\displaystyle \begin{align*}&\text{At any given time, a particle has the position :}\\&p(t)=6t - cos(\frac{(13\cdot \pi t)}{2}) + 1\\&\text{Calculate its velocity at time }t=7\end{align*}

Possible Answers:

\displaystyle -6.14

\displaystyle 0

\displaystyle 6.14

\displaystyle -14.42

Correct answer:

\displaystyle -14.42

Explanation:

\displaystyle \begin{align*}&\text{Velocity is the time rate of change of position. In lay terms,}\\&\text{it is an instantaneous measure of speed and direction. However,}\\&\text{going back to that first definition, note that it is a rate,}\\&\text{and whenever the term rate is used, derivatives should come}\\&\text{to mind. The rate of change of position with respect to time}\\&\text{is the derivative of position with respect to time:}\\&v(t)=\frac{dp(t)}{dt}\\&\text{Taking the derivative of our position function, }6t - cos(\frac{(13\cdot \pi t)}{2}) + 1\\&\text{We find the velocity function: }\frac{(13\cdot \pi sin(\frac{(13\cdot \pi t)}{2}))}{2}+ 6\\&\text{Plugging in our value of time we then get:}\\&v(7)=\frac{(13\cdot \pi sin(\frac{(13\cdot \pi (7))}{2}))}{2}+ 6\\&v(7)=-14.42\end{align*}

Example Question #691 : Derivatives

\displaystyle \begin{align*}&\text{The position of a particle at a given time is given by the function:}\\&p(t)=3t - cos(\frac{(\pi t)}{2}) + sin(4\cdot \pi t) + 5t^{2} + 6t^{3} + 6\\&\text{What is its velocity at time }t=6\text{?}\end{align*}

Possible Answers:

\displaystyle 249.33

\displaystyle 223.53

\displaystyle 723.57

\displaystyle 250.17

Correct answer:

\displaystyle 723.57

Explanation:

\displaystyle \begin{align*}&\text{Velocity is the time rate of change of position. In lay terms,}\\&\text{it is an instantaneous measure of speed and direction. However,}\\&\text{going back to that first definition, note that it is a rate,}\\&\text{and whenever the term rate is used, derivatives should come}\\&\text{to mind. The rate of change of position with respect to time}\\&\text{is the derivative of position with respect to time:}\\&v(t)=\frac{dp(t)}{dt}\\&\text{Taking the derivative of our position function, }3t - cos(\frac{(\pi t)}{2}) + sin(4\cdot \pi t) + 5t^{2} + 6t^{3} + 6\\&\text{We find the velocity function: }10t + 4\cdot \pi cos(4\cdot \pi t) +\frac{ (\pi sin(\frac{(\pi t)}{2}))}{2}+ 18t^{2} + 3\\&\text{Plugging in our value of time we then get:}\\&v(6)=10(6) + 4\cdot \pi cos(4\cdot \pi (6)) +\frac{ (\pi sin(\frac{(\pi (6))}{2}))}{2}+ 18(6)^{2} + 3\\&v(6)=723.57\end{align*}

Learning Tools by Varsity Tutors