All AP Physics 1 Resources
Example Questions
Example Question #1 : Linear Motion
A ball is thrown at a velocity of at an angle of from the horizontal. What are the ball's horizontal and vertical velocities?
There is not enough information to solve this problem
The velocity of can be broken into horizontal and vertical components by using trigonometry. Think of the figure below, where x and y velocity components of the total velocity are shown.
Use the total velocity, the x-component, and the y-component to form a right triangle below.
Treating as the hypotenuse, x-component as the leg adjacent, and y-component as the leg opposite, you can conclude that the velocities are related through trigonometric identities.
Plugging in the given values, we can solve for the x and y velocity components.
Example Question #2 : Ap Physics 1
If a 15kg object is subjected to a force of 175N to the east and another force of 1020N to the west, what is the object’s acceleration?
5.6m/s2
56m/s2
113m/s2
1.4m/s2
56m/s2
First, find the net force by subtracting the opposing forces.
F = 1020N – 175N = 845 N to the west
Next, find acceleration using Newton's second law, .
Example Question #2 : Ap Physics 1
Three blocks (in left-to-right order: block A, block B, block C) are pushed along a frictionless horizontal surface by a 50N force to the right, which acts on block A.
If the masses of the blocks are given by , , and , which of the following best describes the relationship between the accelerations of the blocks?
The three blocks must remain in contact as they move, so they will each have the same velocity and acceleration regardless of their different masses. So, .
Example Question #1 : Ap Physics 1
A block slides down a incline. If the coefficient of friction between the block and the incline is , determine the acceleration of the block as it slides down the incline.
Know what forces are involved by drawing a force diagram.
The gravitational force is broken into the x and y components. The net force on the block in the y-direction is the normal force minus the y component of the gravitational acceleration ().
Notice that the net y-force is equal to zero to show that the block is not moving anywhere in the y-direction. Now, we can isolate the normal force.
The net force in the x-direction is . We know that the block is accelerating in the x-direction; therefore the net force is equal to .
We can use the friction equations to substitute for the x-direction forces.
We can isolate the acceleration and solve using the provided values.
Example Question #2 : Linear Motion
A car of mass is initially at rest, and then accelerates at for . What is the kinetic energy of the car at time ?
The first step will be to find the final velocity of the car. We know the acceleration and time, so we can find the final velocity using kinematics. The initial velocity is zero, since the car starts at rest.
Use this velocity and the mass of the car to solve for the final kinetic energy.
Example Question #1 : Linear Motion
A man throws a ball straight up in the air at a velocity of . If there is a constant air resistance force of against the motion of the ball, what is the maximum height of the ball?
We first need to find the net force acting on the ball during flight. We can then use the net force and Newton's second law to find the total acceleration on the ball.
Use this net force to find the acceleration.
From here, there are two ways to solve. One way uses kinematic equations, and the other uses energy. We will solve using energy.
Total energy must be conserved during the throw, so the initial kinetic energy must equal the final potential energy (since velocity is zero at the maximum height).
Use the given initial velocity to find the final height.
Example Question #2 : Ap Physics 1
What is the acceleration of the system shown above? (Assume the table is frictionless and the mass of the rope connecting blocks is negligible).
The force that translates to the entire system is that of gravity acting on the mass hanging over the ledge.
140N is the total force acting on the system, which has a mass equal to both blocks combined (65 kg + 14 kg = 79 kg). We can find the acceleration using Newton's second law.
Example Question #1 : Ap Physics 1
A spring is compressed from equilibrium by a force of . What is the spring constant for this spring?
We use Hooke's law equation to relate the force, displacement, and spring constant:
We are given the force and the displacement, allowing us to solve for the spring constant.
Note that the displacement is negative, since the spring is compressed. For springs, compressions represents a negative displacement, while stretching represents a positive displacement.
Example Question #21 : Newtonian Mechanics
A mass of weight is suspended vertically from a spring and stretches it from equilibrium. What is the energy stored in the spring?
First, we need to solve for the spring constant by using the force on the spring. We can use Hooke's Law:
The magnitude of the force on the spring will be equal to the force of gravity on the mass, which is given to be . The distance the spring it stretched is in the downward direction, so we must use a negative displacement. Use these values to calculate the spring constant.
Next, use the spring energy equation with the displacement and spring constant to solve for the energy stored in the spring.
Example Question #1 : Ap Physics 1
A ball of mass on a string is rotating about the center axis with a velocity . If the tension force in the string is , what is the radius of the circular path of the ball?
We use the equation for centripetal force to find the radius:
Since the string ties the ball to the axis, the force of tension will be equal to the centripetal force.
Use the given mass and velocity to solve for the radius.
Certified Tutor
Certified Tutor