AP Physics 2 : Circuits

Study concepts, example questions & explanations for AP Physics 2

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Ohm's Law

Parallel circuit 1 jpeg

\displaystyle R_1=10\Omega

\displaystyle R_2=20\Omega

\displaystyle V=25V

What is the current through the battery in the above circuit?

Possible Answers:

\displaystyle 10A

\displaystyle 30A

\displaystyle 0.266A

\displaystyle 3.75A

\displaystyle 0.833A

Correct answer:

\displaystyle 3.75A

Explanation:

First, find the total resistance of the circuit. Since the resistors are in parallel, use the following formula:

\displaystyle \frac{1}{R1}+\frac{1}{R2}=\frac{1}{R_{total}}

Plug in known values.

\displaystyle \frac{1}{10\Omega}+\frac{1}{20\Omega}=\frac{1}{R_{total}} 

\displaystyle R_{total}=6.66\Omega

Next, use Ohm's law to find current.

\displaystyle V=IR

Plug in known values.

\displaystyle I=\frac{25V}{6.66\Omega}=3.75A

Example Question #1 : Circuit Properties

There are 3 resistors in series. Their resistances are, in order, \displaystyle 2\Omega\displaystyle 4\Omega, and \displaystyle 6\Omega. The total potential drop is \displaystyle 12V. What is the potential drop across the second resistor?

Possible Answers:

\displaystyle 2V

\displaystyle 6V

\displaystyle 1V

\displaystyle 4V

\displaystyle 12V

Correct answer:

\displaystyle 4V

Explanation:

Use Ohm's law to find the current passing through each resistor. Because they are in series, they have the same amount of current. Once we get the current, we can plug in the resistance for each resistor to find its potential drop.

\displaystyle I=\frac{12V}{12\Omega}

\displaystyle I= 1A

Now, find the potential drop across the \displaystyle 4\Omega resistor.

\displaystyle V=(1A)(4\Omega)

\displaystyle V= 4V

Therefore, the potential drop across the \displaystyle 4\Omega resistor is \displaystyle 4V

Example Question #2 : Circuit Properties

A \displaystyle 4.5V battery produces a current of \displaystyle 0.90A in a piece of copper wire. What is the resistance of the copper wire?

Possible Answers:

There's not enough information to find the resistance

\displaystyle 3\Omega

\displaystyle 5\Omega

\displaystyle 4.5\Omega

\displaystyle 6.4\Omega

Correct answer:

\displaystyle 5\Omega

Explanation:

Even though there is no resistor, Ohm's law still applies. Use it to find the resistance of the wire.

\displaystyle R= \frac{4.5V}{0.90A}

\displaystyle R= 5\Omega

The resistance of the copper wire is \displaystyle 5\Omega

Example Question #1 : Circuits

Combined circuit 

\displaystyle V_1 = V_2 = 4.5V

\displaystyle R_1=R_3=R_4= 3\Omega

\displaystyle R_2=6\Omega

In the circuit above, find the voltage drop across \displaystyle R_1.

Possible Answers:

\displaystyle 9V

\displaystyle \frac{9}{4}V

None of these

\displaystyle \frac{9}{8}V

\displaystyle 4.5V

Correct answer:

\displaystyle \frac{9}{4}V

Explanation:

First, find the total resistance of the circuit.

\displaystyle R_1 and \displaystyle R_2 are in parallel, so we find the equivalent resistance by using the following formula:

\displaystyle \frac{1}{R_{1}}+\frac{1}R_{2}=\frac{1}{R_{1+2}} 

\displaystyle \frac{1}{3}+\frac{1}{6}=\frac{1}{2}=\frac{1}{R_{1+2}}

\displaystyle R_{1+2}=2\Omega

Next, add the series resistors together.

\displaystyle R_{1+2}+R_3+R_4=R_{total}

\displaystyle R_{total}=8\Omega

Use Ohm's law to find the current through the system. 

\displaystyle V=IR

\displaystyle (V_1+V_2)=IR

\displaystyle 9V=I\cdot 8\Omega

\displaystyle I=\frac{9}{8}A

Since \displaystyle R_1 and \displaystyle R_2 are in parallel, they will have the same voltage drop accross them. 

\displaystyle V_{1+2}=\frac{9}{8}A \cdot R_{1+2}

\displaystyle V_{1+2}=\frac{9}{8}A\cdot 2\Omega

\displaystyle V_{1+2}=\frac{9}{4}V

Example Question #2 : Circuits

Combined circuit

\displaystyle V_1 = V_2 = 4.5V

\displaystyle R_1=R_3=R_4= 3\Omega

\displaystyle R_2=6\Omega

In the circuit above, find the current through \displaystyle R_2.

Possible Answers:

\displaystyle \frac{3}{8}A

None of these

\displaystyle \frac{3}{4}A

\displaystyle \frac{9}{8}A

\displaystyle 3A

Correct answer:

\displaystyle \frac{3}{8}A

Explanation:

First, find the total resistance of the circuit.

\displaystyle R_1 and \displaystyle R_2 are in parallel, so we find their equivalent resistance by using the following formula:

\displaystyle \frac{1}{R_{1}}+\frac{1}R_{2}=\frac{1}{R_{1+2}}

\displaystyle \frac{1}{3}+\frac{1}{6}=\frac{1}{R_{1+2}}

\displaystyle R_{1+2}=2\Omega

Next, add the series resistors together.

\displaystyle R_{1+2}+R_3+R_4=R_{total}

\displaystyle R_{total}=8\Omega

Use Ohm's law to find the current in the system.

\displaystyle V=IR

\displaystyle (V_1+V_2)=IR

\displaystyle 9V=I\cdot 8\Omega

\displaystyle I=\frac{9}{8}A

The current through \displaystyle R_1 and \displaystyle R_2 needs to add up to the total current, since they are in parallel.

\displaystyle I_1 + I_2 =I_{total}

\displaystyle I_1 + I_2 =\frac{9}{8}A

Also, the voltage drop across them need to be equal, since they are in parallel.

\displaystyle V_1=V_2

\displaystyle I_1R_1=I_2R_2

\displaystyle I_1\cdot3\Omega=I_2\cdot 6\Omega 

Set up a system of equations.

\displaystyle I_1\cdot3\Omega=I_2\cdot 6\Omega

\displaystyle I_1 + I_2 =\frac{9}{8}A

Solve. 

\displaystyle 2I_2=I_1

\displaystyle 3I_2=\frac{9}{8}A

\displaystyle I_2=\frac{3}{8}A

Example Question #3 : Circuit Properties

Combined circuit

\displaystyle V_1 = V_2 = 4.5V

\displaystyle R_1=R_3=R_4= 3\Omega 

\displaystyle R_2=6\Omega

In the circuit above, find the current through \displaystyle R_3.

Possible Answers:

\displaystyle \frac{9}{4}A

None of these

\displaystyle \frac{3}{4}A

\displaystyle \frac{3}{8}A

\displaystyle \frac{9}{8}A

Correct answer:

\displaystyle \frac{9}{8}A

Explanation:

First, find the total resistance of the circuit.

\displaystyle R_1 and \displaystyle R_2 are in parallel, so we find their equivalent resistance by using the following formula:

\displaystyle \frac{1}{R_{1}}+\frac{1}R_{2}=\frac{1}{R_{1+2}}

\displaystyle \frac{1}{3}+\frac{1}{6}=\frac{1}{R_{1+2}}

\displaystyle R_{1+2}=2\Omega

Next, add the series resistors together.

\displaystyle R_{1+2}+R_3+R_4=R_{total}

\displaystyle R_{total}=8\Omega

Use Ohm's law to find the current in the system.

\displaystyle V=IR

\displaystyle (V_1+V_2)=IR

\displaystyle 9V=I\cdot 8\Omega

\displaystyle I=\frac{9}{8}A

In series, all resistors will have the same current.

Thus, the current through \displaystyle R_3 is the same as through the rest of the circuit.

Example Question #2 : Circuits

Combined circuit

\displaystyle V_1 = V_2 = 4.5V

\displaystyle R_1=R_3=R4= 3\Omega

\displaystyle R_2=6\Omega

In the circuit above, find the voltage drop across \displaystyle R_3.

Possible Answers:

\displaystyle 4.5V

None of these

\displaystyle 3V

\displaystyle \frac{27}{8}V

\displaystyle 9V

Correct answer:

\displaystyle \frac{27}{8}V

Explanation:

First, find the total resistance of the circuit.

\displaystyle R_1 and \displaystyle R_2 are in parallel, so we find their equivalent resistance by using the following formula:

\displaystyle \frac{1}{R_{1}}+\frac{1}R_{2}=\frac{1}{R_{1+2}}

\displaystyle \frac{1}{3}+\frac{1}{6}=\frac{1}{R_{1+2}}

\displaystyle R_{1+2}=2\Omega

Next, add the series resistors together.

\displaystyle R_{1+2}+R_3+R_4=R_{total}

\displaystyle R_{total}=8\Omega

Use Ohm's law to find the current in the system.

\displaystyle V=IR

\displaystyle (V_1+V_2)=IR

\displaystyle 9V=I\cdot 8\Omega

\displaystyle I=\frac{9}{8}A

\displaystyle R_1 and \displaystyle R_2 will have the same voltage drop across them, as they are in parallel, and are equivalent to the combined resistor \displaystyle R_{1+2}

\displaystyle V=\frac{9}{8}A\cdot R_{3}

\displaystyle V=\frac{9}{8}A\cdot 3\Omega

\displaystyle V=\frac{27}{8}V

Example Question #1 : Circuits

Combined circuit

\displaystyle V_1=V_2=4.5V

\displaystyle R_1=R_3=R_4= 3\Omega 

\displaystyle R_2=6\Omega

In the circuit above, find the voltage drop across \displaystyle R_2.

Possible Answers:

\displaystyle \frac{9}{4}V

\displaystyle 9V

\displaystyle 4.5V

None of these

\displaystyle \frac{9}{8}V

Correct answer:

\displaystyle \frac{9}{4}V

Explanation:

First, find the total resistance of the circuit.

\displaystyle R_1 and \displaystyle R_2 are in parallel, so we find their equivalent resistance by using the following formula:

\displaystyle \frac{1}{R_{1}}+\frac{1}R_{2}=\frac{1}{R_{1+2}}

\displaystyle \frac{1}{3}+\frac{1}{6}=\frac{1}{R_{1+2}}

\displaystyle R_{1+2}=2\Omega

Next, add the series resistors together.

\displaystyle R_{1+2}+R_3+R_4=R_{total}

\displaystyle R_{total}=8\Omega

Use Ohm's law to find the current in the system.

\displaystyle V=IR

\displaystyle (V_1+V_2)=IR

\displaystyle 9V=I\cdot 8\Omega

\displaystyle I=\frac{9}{8}A

\displaystyle R_1 and \displaystyle R_2 will have the same voltage drop across them, as they are in parallel, and are equivalent to the combined resistor \displaystyle R_{1+2}

\displaystyle V=\frac{9}{8}A\cdot R_{1+2}

\displaystyle V=\frac{9}{8}A\cdot 2\Omega

\displaystyle V=\frac{9}{4}V

Example Question #1 : Ohm's Law

Three parallel resistors

\displaystyle R_1=R_4=R_5=2 ohms

 

\displaystyle R_2=5 ohms

 

\displaystyle R_3=6 ohms

 

 

What is the total resistance of the circuit?

Possible Answers:

\displaystyle \frac{67}{13}\Omega

\displaystyle 4\Omega

\displaystyle \frac{13}{15}\Omega

None of these

\displaystyle 17\Omega

Correct answer:

\displaystyle \frac{67}{13}\Omega

Explanation:

\displaystyle R_1, \displaystyle R_2, and \displaystyle R_3 are in parallel, so we add them by using:

 

 

We find that \displaystyle R_{1,2,3} = \frac{15}{13}\Omega

 

\displaystyle R_{1,2,3}, \displaystyle R_4, and \displaystyle R_5 are in series. So we use:

 

\displaystyle R_{1,2,3}+R_4 +R_5 = R_{total}

 

\displaystyle \frac{15}{13}\Omega+1\Omega +1\Omega = R_{total}

 

\displaystyle R_{total}=\frac{67}{13}\Omega

 

Example Question #2 : Circuits

Three parallel resistors

\displaystyle R_1=R_4=R_5=2\Omega

 

\displaystyle R_2=5\Omega

 

\displaystyle R_3=6\Omega

What is the current flowing through \displaystyle R_3?

 

Possible Answers:

\displaystyle .398 amps

\displaystyle .375 amps

None of these

\displaystyle .650 amps

\displaystyle .560 amps

Correct answer:

\displaystyle .560 amps

Explanation:

 

\displaystyle R_1, \displaystyle R_2, and \displaystyle R_3 are in parallel, so we add them by using:

 

 

We find that \displaystyle R_{1,2,3} = \frac{15}{13}\Omega

 

\displaystyle R_{1,2,3}, \displaystyle R_4, and \displaystyle R_5 are in series. So we use:

 

\displaystyle R_{1,2,3}+R_4 +R_5 = R_{total}

 

\displaystyle \frac{15}{13}\Omega+1\Omega +1\Omega = R_{total}

 

\displaystyle R_{total}=\frac{67}{13}\Omega

 

First, we need to find the total current of the circuit, we simply use:

 

\displaystyle V=IR

 

\displaystyle I=\frac{V}{R}

 

\displaystyle I=\frac{15V}{\frac{67}{13}\Omega}

 

\displaystyle I=\frac{195}{67} amps

 

Because \displaystyle R_1\displaystyle R_2 and \displaystyle R_3 are in parallel,

 

\displaystyle I_1+I_2+I_3=I_{total}

 

Also, the voltage drop must be the same across all three

 

\displaystyle V_1=V_2=V_3

 

Using

\displaystyle V=IR

 

\displaystyle I_1R_1=I_2R_2=I_3R_3

 

Using algebraic subsitution we get:

 

 

\displaystyle I_3+I_3 \frac{R_3}{R_1}+I_3 \frac{R_3}{R_2}=I_{total}

 

Solving for \displaystyle I_3

 

\displaystyle \frac{I_{Total}}{1+\frac{R_3}{R_1}+\frac{R_3}{R_2}}=I_3

 

\displaystyle \frac{I_{Total}}{1+\frac{6}{2}+\frac{6}{5}}=I_3

 

 \displaystyle .560 amps=I_3

Learning Tools by Varsity Tutors