Calculus 2 : New Concepts

Study concepts, example questions & explanations for Calculus 2

varsity tutors app store varsity tutors android store

Example Questions

Example Question #3 : Euler's Method And L'hopital's Rule

Suppose we have the following differential equation with the initial condition:

\displaystyle \frac{\partial p }{\partial x} = 0.5x(1-x), \ p(0) = 2

Use Euler's method to approximate \displaystyle p(2), using a step size of \displaystyle 1.

 

 

Possible Answers:

\displaystyle 0

\displaystyle 1

\displaystyle 2

\displaystyle -2

\displaystyle -1

Correct answer:

\displaystyle 2

Explanation:

We start at x = 0 and move to x=2, with a step size of 1. Essentially, we approximate the next step by using the formula:

\displaystyle p(x + \Delta x) = p(x) + p'(x)\cdot (\Delta x).

So applying Euler's method, we evaluate using derivative: 

\displaystyle p'(x) = 0.5x(1-x), \ p(0) = 2 

And two step sizes, at x = 1 and x = 2.

\displaystyle {}p(x=1) = p(0) + (1 - 0)p'(0) = 2 + 1\cdot p'(0) = 2 + 1 \cdot 0.5(0)(1-0) = 2 + 0 = 2 

\displaystyle {}p(x=2) = p(1) + (2-1)\cdot p'(1) = 2 + 1\cdot p'(1) = 2 + 0.5(1)(1-1) = 2 + 0 = 2

And thus the evaluation of p at x = 2, using Euler's method, gives us p(2) = 2.

Example Question #1 : Euler's Method

Approximate \displaystyle \small e^{\frac{1}{2}} by using Euler's method on the differential equation

\displaystyle \small y'=y

with initial condition \displaystyle \small y(0)=1 (which has the solution \displaystyle \small y(t)=e^t) and time step \displaystyle \small \small h=\frac{1}{4}

Possible Answers:

\displaystyle \small 1.649

\displaystyle \small 1.5625

\displaystyle \small 1.56

\displaystyle \small 1.5

Correct answer:

\displaystyle \small 1.5625

Explanation:

Using Euler's method with \displaystyle \small h=1/4 means that we use two iterations to get the approximation. The general iterative formula is 

\displaystyle \small y_{i+1}=y_i+h\cdot f(t_i,y_i)

where each \displaystyle \small t_i is

\displaystyle \small t_0=0

\displaystyle \small t_1=\frac{1}{4}

\displaystyle \small t_2=\frac{1}{2}

 \displaystyle \small y_i is an approximation of \displaystyle \small y(t_i), and \displaystyle y'=f(t,y)=y, for this differential equation. So we have

\displaystyle \small \small \small \small y_1=y_0+\frac{1}{4}f(t_0,y_0)=1+\frac{1}{4}\cdot 1=1.25

\displaystyle \small \small \small \small e^{1/2}= y(\frac{1}{2})\approx y_2=y_1+\frac{1}{4}f(t_1,y_1)=1.25+\frac{1}{4}\cdot 1.25=1.5625

So our approximation of \displaystyle \small e^{1/2} is

\displaystyle \small e^{1/2}\approx 1.5625

Example Question #3 : Euler's Method

Use Euler's method to find the solution to the differential equation \displaystyle \frac{dy}{dx}=3x+4y  at \displaystyle x=1 with the initial condition \displaystyle y(0)=0 and step size \displaystyle h=0.25.

Possible Answers:

\displaystyle (1,0)

\displaystyle (1,2.0625)

\displaystyle (1,0.1875)

\displaystyle (1,0.75)

Correct answer:

\displaystyle (1,2.0625)

Explanation:

Euler's method uses iterative equations to find a numerical solution to a differential equation.  The following equations

\displaystyle x_{n+1}=x_n+h

\displaystyle y_{n+1}=y_n+h*f(x_n,y_n)

are solved starting at the initial condition and ending at the desired value.  \displaystyle f(x_n,y_n) is the solution to the differential equation.

In this problem,

\displaystyle f(x,y)=\frac{dy}{dx}=3x+4y 

\displaystyle h=0.25

Starting at the initial point \displaystyle (x_0,y_0)=(0,0)

 

\displaystyle x_{1}=x_0+h=0+0.25=0.25

\displaystyle y_{1}=y_0+h*f(x_0,y_0)=0+0.25*(3*0+4*0)=0

\displaystyle (x_1,y_1)=(0.25,0)

 

\displaystyle x_{2}=x_1+h=0.25+0.25=0.5

\displaystyle y_{2}=y_1+h*f(x_1,y_1)=0+0.25*(3*0.25+4*0)=0.1875

\displaystyle (x_2,y_2)=(0.5,0.1875)

 

We continue using Euler's method until \displaystyle x=1.  The results of Euler's method are in the table below.

Screen shot 2015 11 19 at 3.48.44 pm

Note: Solving this differential equation analytically gives a different answer, \displaystyle 9.2997.  Future problems will explain this discrepancy. 

Example Question #4 : Euler's Method

Use Euler's method to find the solution to the differential equation \displaystyle \frac{dy}{dx}=3x+4y  at \displaystyle x=1 with the initial condition \displaystyle y(0)=0 and step size \displaystyle h=0.1.

Possible Answers:

\displaystyle (1,3.0114)

\displaystyle (1,4.4860)

\displaystyle (1,0.03)

\displaystyle (1,0)

Correct answer:

\displaystyle (1,4.4860)

Explanation:

Euler's method uses iterative equations to find a numerical solution to a differential equation.  The following equations

\displaystyle x_{n+1}=x_n+h

\displaystyle y_{n+1}=y_n+h*f(x_n,y_n)

are solved starting at the initial condition and ending at the desired value.  \displaystyle f(x_n,y_n) is the solution to the differential equation.

In this problem,

\displaystyle f(x,y)=\frac{dy}{dx}=3x+4y 

\displaystyle h=0.1

Starting at the initial point \displaystyle (x_0,y_0)=(0,0)

 

\displaystyle x_{1}=x_0+h=0+0.1=0.1

\displaystyle y_{1}=y_0+h*f(x_0,y_0)=0+0.1*(3*0+4*0)=0

\displaystyle (x_1,y_1)=(0.1,0)

 

\displaystyle x_{2}=x_1+h=0.1+0.1=0.2

\displaystyle y_{2}=y_1+h*f(x_1,y_1)=0+0.1*(3*0.1+4*0)=0.03

\displaystyle (x_2,y_2)=(0.2,0.03)

 

We continue using Euler's method until \displaystyle x=1.  The results of Euler's method are in the table below.

Problem 2

Note: Solving this differential equation analytically gives a different answer, \displaystyle 9.2997. As the step size gets larger, Euler's method gives a more accurate answer. 

Example Question #5 : Euler's Method

Use Euler's method to find the solution to the differential equation \displaystyle \frac{dy}{dx}=\frac{y}{x}  at \displaystyle x=2 with the initial condition \displaystyle y(1)=1 and step size \displaystyle h=0.25.

Possible Answers:

\displaystyle (2,1)

\displaystyle (2,3)

\displaystyle (2,2)

\displaystyle (2,1.75)

Correct answer:

\displaystyle (2,2)

Explanation:

Euler's method uses iterative equations to find a numerical solution to a differential equation.  The following equations

\displaystyle x_{n+1}=x_n+h

\displaystyle y_{n+1}=y_n+h*f(x_n,y_n)

are solved starting at the initial condition and ending at the desired value.  \displaystyle f(x_n,y_n) is the solution to the differential equation.

In this problem,  

\displaystyle f(x,y)=\frac{dy}{dx}=\frac{y}{x} 

\displaystyle h=0.25

Starting at the initial point \displaystyle (x_0,y_0)=(1,1)

 

\displaystyle x_{1}=x_0+h=1+0.25=1.25

\displaystyle y_{1}=y_0+h*f(x_0,y_0)=1+0.25*(1/1)=1.25

\displaystyle (x_1,y_1)=(1.25,1.25)

 

\displaystyle x_{2}=x_1+h=1.25+0.25=1.5

\displaystyle y_{2}=y_1+h*f(x_1,y_1)=1.25+0.25*(1.25/1.25)=1.5

\displaystyle (x_2,y_2)=(1.5,1.5)

 

We continue using Euler's method until \displaystyle x=2.  The results of Euler's method are in the table below.

Problem 3

Example Question #6 : Euler's Method

Use Euler's method to find the solution to the differential equation \displaystyle \frac{dy}{dx}=\frac{y}{x}  at \displaystyle x=2 with the initial condition \displaystyle y(1)=1 and step size \displaystyle h=0.1.

Possible Answers:

\displaystyle (2,1)

\displaystyle (2,3)

\displaystyle (2,2)

\displaystyle (2,1.75)

Correct answer:

\displaystyle (2,2)

Explanation:

Euler's method uses iterative equations to find a numerical solution to a differential equation.  The following equations

\displaystyle x_{n+1}=x_n+h

\displaystyle y_{n+1}=y_n+h*f(x_n,y_n)

are solved starting at the initial condition and ending at the desired value.  \displaystyle f(x_n,y_n) is the solution to the differential equation.

In this problem,

\displaystyle f(x,y)=\frac{dy}{dx}=\frac{y}{x} 

\displaystyle h=0.1

Starting at the initial point \displaystyle (x_0,y_0)=(1,1)

 

\displaystyle x_{1}=x_0+h=1+0.1=1.1

\displaystyle y_{1}=y_0+h*f(x_0,y_0)=1+0.1*(1/1)=1.1

\displaystyle (x_1,y_1)=(1.1,1.1)

 

\displaystyle x_{2}=x_1+h=1.1+0.1=1.2

\displaystyle y_{2}=y_1+h*f(x_1,y_1)=1.1+0.1*(1.1/1.1)=1.2

\displaystyle (x_2,y_2)=(1.2,1.2)

 

We continue using Euler's method until \displaystyle x=2.  The results of Euler's method are in the table below.

Problem 4

Note: Due to the simplicity of the differential equation, Euler's method finds the exact solution, even with a large step size,  Using a smaller step size is unnecessary and more time consuming.

Example Question #7 : Euler's Method

Use Euler's method to find the solution to the differential equation \displaystyle \frac{dy}{dx}=cos(x)  at \displaystyle x=\pi/2 with the initial condition \displaystyle y(0)=0 and step size \displaystyle h= \pi/10.

Possible Answers:

\displaystyle (\pi/2,0.314)

\displaystyle (\pi/2,1.57)

\displaystyle (\pi/2,1.25)

\displaystyle (\pi/2,1.14)

Correct answer:

\displaystyle (\pi/2,1.14)

Explanation:

Euler's method uses iterative equations to find a numerical solution to a differential equation.  The following equations

\displaystyle x_{n+1}=x_n+h

\displaystyle y_{n+1}=y_n+h*f(x_n,y_n)

are solved starting at the initial condition and ending at the desired value.  \displaystyle f(x_n,y_n) is the solution to the differential equation.

In this problem,

\displaystyle f(x,y)=\frac{dy}{dx}=cos(x) 

\displaystyle h= \pi/10

Starting at the initial point \displaystyle (x_0,y_0)=(0,0)

 

\displaystyle x_{1}=x_0+h=0+\pi/10=\pi/10

\displaystyle y_{1}=y_0+h*f(x_0,y_0)=0+(\pi/10)*cos(0)=\pi/10

\displaystyle (x_1,y_1)=(\pi/10,\pi/10)

 

\displaystyle x_{2}=x_1+h=\pi/10+\pi/10=\pi/5

\displaystyle y_{2}=y_1+h*f(x_1,y_1)=\pi/10+(\pi/10)*cos(\pi/10)=\pi/5

\displaystyle (x_2,y_2)=(\pi/5,\pi/5)

 

We continue using Euler's method until \displaystyle x=\pi/2.  The results of Euler's method are in the table below.

Problem 7

Example Question #1 : New Concepts

Use Euler's method to find the solution to the differential equation \displaystyle \frac{dy}{dx}=cos(x)  at \displaystyle x=\pi/2 with the initial condition \displaystyle y(0)=0 and step size \displaystyle h= \pi/20.

Possible Answers:

\displaystyle (\pi/2,1.07)

\displaystyle (\pi/2,2)

\displaystyle (\pi/2,0.314)

\displaystyle (\pi/2,1.25)

Correct answer:

\displaystyle (\pi/2,1.07)

Explanation:

Euler's method uses iterative equations to find a numerical solution to a differential equation.  The following equations

\displaystyle x_{n+1}=x_n+h

\displaystyle y_{n+1}=y_n+h*f(x_n,y_n)

are solved starting at the initial condition and ending at the desired value.  \displaystyle f(x_n,y_n) is the solution to the differential equation.

In this problem,

\displaystyle f(x,y)=\frac{dy}{dx}=cos(x) 

\displaystyle h= \pi/20

Starting at the initial point \displaystyle (x_0,y_0)=(0,0)

 

\displaystyle x_{1}=x_0+h=0+\pi/20=\pi/20

\displaystyle y_{1}=y_0+h*f(x_0,y_0)=0+(\pi/20)*cos(0)=\pi/20

\displaystyle (x_1,y_1)=(\pi/20,\pi/20)

 

\displaystyle x_{2}=x_1+h=\pi/20+\pi/20=\pi/10

\displaystyle y_{2}=y_1+h*f(x_1,y_1)=\pi/20+(\pi/20)*cos(\pi/20)=\pi/10

\displaystyle (x_2,y_2)=(\pi/10,\pi/10)

 We continue using Euler's method until \displaystyle x=\pi/2.  The results of Euler's method are in the table below.

Problem 8

Example Question #9 : Euler's Method

Use Euler's method to find the solution to the differential equation \displaystyle \frac{dy}{dx}=y^2e^{x}  at \displaystyle x=6 with the initial condition \displaystyle y(0)=0.01 and step size \displaystyle h= 1.

Possible Answers:

\displaystyle (6,1.0157)

\displaystyle (6,0.0239)

\displaystyle (6,0.1089)

\displaystyle (6,0.1013)

Correct answer:

\displaystyle (6,0.1089)

Explanation:

Euler's method uses iterative equations to find a numerical solution to a differential equation.  The following equations

\displaystyle x_{n+1}=x_n+h

\displaystyle y_{n+1}=y_n+h*f(x_n,y_n)

are solved starting at the initial condition and ending at the desired value.  \displaystyle f(x_n,y_n) is the solution to the differential equation.

In this problem,

\displaystyle f(x,y)=\frac{dy}{dx}=y^2e^{x} 

\displaystyle h= 1

Starting at the initial point \displaystyle (x_0,y_0)=(0,0.01)

 

\displaystyle x_{1}=x_0+h=0+1=1

\displaystyle y_{1}=y_0+h*f(x_0,y_0)=0.01+1*(0.01)^2*e^{0}=0.0101

\displaystyle (x_1,y_1)=(1,0.0101)

 

\displaystyle x_{2}=x_1+h=1+1=2

\displaystyle y_{2}=y_1+h*f(x_1,y_1)=0.0101+1*(0.0101)*e^{1}=0.01038

\displaystyle (x_2,y_2)=(2,0.01038)

 

We continue using Euler's method until \displaystyle x=6.  The results of Euler's method are in the table below.

Problem 11

Example Question #2 : Euler's Method

Use Euler's method to find the solution to the differential equation \displaystyle \frac{dy}{dx}=y^2e^{x}  at \displaystyle x=6 with the initial condition \displaystyle y(0)=0.01 and step size \displaystyle h= 0.5.

Possible Answers:

\displaystyle (6,5.113)

\displaystyle (6,0.1089)

\displaystyle (6,0.012)

\displaystyle (6,0.013)

Correct answer:

\displaystyle (6,5.113)

Explanation:

Euler's method uses iterative equations to find a numerical solution to a differential equation.  The following equations

\displaystyle x_{n+1}=x_n+h

\displaystyle y_{n+1}=y_n+h*f(x_n,y_n)

are solved starting at the initial condition and ending at the desired value.  \displaystyle f(x_n,y_n) is the solution to the differential equation.

In this problem,

\displaystyle f(x,y)=\frac{dy}{dx}=y^2e^{x} 

\displaystyle h= 0.5

Starting at the initial point \displaystyle (x_0,y_0)=(0,0.01)

 

\displaystyle x_{1}=x_0+h=0+0.5=0.5

\displaystyle y_{1}=y_0+h*f(x_0,y_0)=0.01+0.5*(0.01)^2*e^{0}=0.01005

\displaystyle (x_1,y_1)=(0.5,0.01005)

 

\displaystyle x_{2}=x_1+h=0.5+0.5=1

\displaystyle y_{2}=y_1+h*f(x_1,y_1)=0.01005+0.5*(0.01005)*e^{1}=0.01013

\displaystyle (x_2,y_2)=(1,0.01013)

 

We continue using Euler's method until \displaystyle x=6.  The results of Euler's method are in the table below.

Problem 12

Learning Tools by Varsity Tutors