Calculus 2 : Parametric

Study concepts, example questions & explanations for Calculus 2

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Parametric, Polar, And Vector

Rewrite as a Cartesian equation:

\(\displaystyle x = t^{2} + 2t + 1, y = t^{2} - 2t + 1, t \in [-1, 1]\)

Possible Answers:

\(\displaystyle y = x - 2\)

\(\displaystyle y = x - 4 - 4\sqrt{x}\)

\(\displaystyle y = x + 4 - 4\sqrt{x}\)

\(\displaystyle y = x+2\)

\(\displaystyle y = x + 4 + 4\sqrt{x}\)

Correct answer:

\(\displaystyle y = x + 4 - 4\sqrt{x}\)

Explanation:

\(\displaystyle x = t^{2} + 2t + 1\)

\(\displaystyle x = \left ( t + 1\right )^{2}\)

\(\displaystyle \pm \sqrt{x} = t + 1\)

So 

\(\displaystyle \sqrt{x} = t + 1\) or \(\displaystyle -\sqrt{x} = t + 1\)

We are restricting \(\displaystyle t\) to values on \(\displaystyle \left [ -1, 1\right ]\), so \(\displaystyle t + 1\) is nonnegative; we choose 

\(\displaystyle \sqrt{x} = t + 1\).

Also,

\(\displaystyle y = t^{2} - 2t + 1\)

\(\displaystyle y= \left ( t - 1\right )^{2}\)

\(\displaystyle \sqrt{y} = \pm \left ( t - 1\right )\)

So 

\(\displaystyle \sqrt{y} = t- 1\) or \(\displaystyle -\sqrt{y} = t- 1\)

We are restricting \(\displaystyle t\) to values on \(\displaystyle \left [ -1, 1\right ]\), so \(\displaystyle t - 1\) is nonpositive; we choose

\(\displaystyle -\sqrt{y} = t- 1\)

or equivalently,

\(\displaystyle \sqrt{y} = -t+ 1\)

to make \(\displaystyle t - 1\) nonpositive.

 

Then,

\(\displaystyle \sqrt{x}+ \sqrt{y} = (t + 1) + (-t + 1)\)

and 

\(\displaystyle \sqrt{x}+ \sqrt{y} = 2\)

\(\displaystyle \sqrt{y} = 2 - \sqrt{x}\)

\(\displaystyle y =\left ( 2 - \sqrt{x} \right )^2\)

\(\displaystyle y = 4 - 4\sqrt{x} + \left (\sqrt{x} \right )^{2}\)

\(\displaystyle y = x + 4 - 4\sqrt{x}\)

Example Question #1 : Parametric, Polar, And Vector

Write in Cartesian form:

\(\displaystyle x = \cos 2t, y = \sin t\)

Possible Answers:

\(\displaystyle x - 2y = 1\)

\(\displaystyle x + 2y = 1\)

\(\displaystyle x - 2y^{2} = 1\)

\(\displaystyle x = 2y^{2}\)

\(\displaystyle x + 2y^{2} = 1\)

Correct answer:

\(\displaystyle x + 2y^{2} = 1\)

Explanation:

Rewrite \(\displaystyle x\) using the double-angle formula:

\(\displaystyle x = \cos 2t =1 - 2\sin ^{2} t = 1 - 2y^{2}\)

Then 

\(\displaystyle x = 1 - 2y^{2}\)

\(\displaystyle x + 2y^{2} = 1\)

which is the correct choice.

Example Question #1 : Parametric

Write in Cartesian form:

\(\displaystyle x = 3t, y = 2t^{2}\)

Possible Answers:

\(\displaystyle y = \frac{9}{2} x^{2}\)

\(\displaystyle \frac{x^{2}}{9} - \frac{y^{2}}{2} = 1\)

\(\displaystyle \frac{x^{2}}{2} - \frac{y^{2}}{9} = 1\)

\(\displaystyle y = \frac{2}{9} x^{2}\)

\(\displaystyle x^{2}+ y^{2} = 36\)

Correct answer:

\(\displaystyle y = \frac{2}{9} x^{2}\)

Explanation:

\(\displaystyle x = 3t\), so 

\(\displaystyle x^{2} = (3t)^{2} = 9t^{2} = \frac{9}{2} \cdot 2t^{2} = \frac{9}{2} y\).

 

\(\displaystyle \frac{9}{2} y= x^{2}\), so

\(\displaystyle \frac{2}{9}\cdot \frac{9}{2} y = \frac{2}{9}x^{2}\)

\(\displaystyle y = \frac{2}{9}x^{2}\)

Example Question #4 : Parametric, Polar, And Vector

Write in Cartesian form:

\(\displaystyle x = 2t - 1\)

\(\displaystyle y = 4t+2\)

Possible Answers:

\(\displaystyle y = 2x\)

\(\displaystyle y = 2x - 4\)

\(\displaystyle y = 2x + 4\)

\(\displaystyle y = \frac{1}{2}x + 2\)

\(\displaystyle y = \frac{1}{2}x - 2\)

Correct answer:

\(\displaystyle y = 2x + 4\)

Explanation:

\(\displaystyle y = 4t+2 = 4t - 2 + 4 = 2 (2t - 1)+ 4 = 2x + 4\),

so the Cartesian equation is 

\(\displaystyle y = 2x + 4\).

Example Question #5 : Parametric, Polar, And Vector

Write in Cartesian form:

\(\displaystyle x = \ln (t+1)\)

\(\displaystyle y = t^2 + 2t + 2\)

\(\displaystyle t \in (-1, \infty )\)

Possible Answers:

\(\displaystyle y = e^{2x} + e\)

\(\displaystyle y = e^{2x} - e\)

\(\displaystyle y = e^{2x} - 1\)

\(\displaystyle y = e^{2x} + 1\)

\(\displaystyle y = e^{2x}+ 2\)

Correct answer:

\(\displaystyle y = e^{2x} + 1\)

Explanation:

\(\displaystyle x = \ln (t+1)\)

so 

\(\displaystyle e ^{x} = \left [ \ln (t+1) \right ] ^{x}\)

\(\displaystyle e ^{x} = t + 1\)

 

\(\displaystyle y = t^2 + 2t + 2 = t^2 + 2t + 1 + 1 = (t + 1)^{2}+ 1 = \left (e^{x} \right )^{2} + 1 = e^{2x} + 1\)

Therefore the Cartesian equation is  \(\displaystyle y = e^{2x} + 1\).

Example Question #6 : Parametric, Polar, And Vector

Rewrite as a Cartesian equation:

\(\displaystyle x =10^ {t}, y = \sinh t, t \in (0,\infty )\)

Possible Answers:

\(\displaystyle y = \frac{ x ^{2 \log e} }{2 x ^{\log e}}\)

\(\displaystyle y = \frac{ x ^{2 \log e} -1}{2 x ^{\log e}}\)

\(\displaystyle y = \frac{ 2x ^{2 \log e} -1}{2 x ^{\log e}}\)

\(\displaystyle y = \frac{ x ^{2 \log e} +1}{2 x ^{\log e}}\)

\(\displaystyle y = \frac{ x ^{2 \log e} -1}{ x ^{2 \log e} + 1}\)

Correct answer:

\(\displaystyle y = \frac{ x ^{2 \log e} -1}{2 x ^{\log e}}\)

Explanation:

\(\displaystyle y = \sinh t = \frac{e ^{2t} -1}{2e ^{t}} = \frac{\left (e ^{ t} \right) ^{2} -1}{2e ^{t}}\)

\(\displaystyle e^{t} = 10 ^{\log e \cdot t} =\left ( 10 ^{ t} \right )^{\log e} = x ^{\log e}\), so

\(\displaystyle y = \frac{\left ( x ^{\log e} \right) ^{2} -1}{2 x ^{\log e}}= \frac{ x ^{2 \log e} -1}{2 x ^{\log e}}\)

This makes the Cartesian equation

\(\displaystyle y = \frac{ x ^{2 \log e} -1}{2 x ^{\log e}}\).

Example Question #1 : Parametric Form

\(\displaystyle \small x=3t+4\) and \(\displaystyle \small y=1/t\). What is \(\displaystyle \small y\) in terms of \(\displaystyle \small x\) (rectangular form)?

Possible Answers:

\(\displaystyle \small y=3/(x-4)\)

\(\displaystyle \small y=(x-4)/3\)

\(\displaystyle \small y=(x-3)/4\)

\(\displaystyle \small y=4/(x-3)\)

Correct answer:

\(\displaystyle \small y=3/(x-4)\)

Explanation:

In order to solve this, we must isolate \(\displaystyle \small t\) in both equations. 

\(\displaystyle \small \small x=3t+4\rightarrow t=(x-4)/3\) and 

\(\displaystyle \small y=1/t\rightarrow t=1/y\).

Now we can set the right side of those two equations equal to each other since they both equal \(\displaystyle \small t\).

 \(\displaystyle \small (x-4)/3=1/y\).

By multiplying both sides by \(\displaystyle \small 3y/(x-4)\), we get \(\displaystyle \small y=3/(x-4)\), which is our equation in rectangular form.

Example Question #2 : Parametric, Polar, And Vector Functions

If \(\displaystyle x=3+t\) and \(\displaystyle y=4t+7\), what is \(\displaystyle y\) in terms of \(\displaystyle x\) (rectangular form)?

Possible Answers:

\(\displaystyle y=4x-2\)

\(\displaystyle y=4x-5\)

\(\displaystyle y=4x-3\)

\(\displaystyle y=4x-7\)

\(\displaystyle y=4x-12\)

Correct answer:

\(\displaystyle y=4x-5\)

Explanation:

Given \(\displaystyle x=3+t\) and  \(\displaystyle y=4t+7\), we can find \(\displaystyle y\) in terms of \(\displaystyle x\) by isolating \(\displaystyle t\) in both equations:

 

\(\displaystyle x=3+t\rightarrow t=x-3\)

\(\displaystyle y=4t+7\rightarrow t=\frac{y-7}{4}\)

Since both of these transformations equal \(\displaystyle t\), we can set them equal to each other:

\(\displaystyle \frac{y-7}{4}=x-3\)

\(\displaystyle y-7=4(x-3)\)

\(\displaystyle y-7=4x-12\)

\(\displaystyle y=4x-5\)

Example Question #3 : Parametric Form

Given \(\displaystyle x=7t-5\) and \(\displaystyle y=2t+9\), what is \(\displaystyle y\) in terms of \(\displaystyle x\) (rectangular form)? 

Possible Answers:

\(\displaystyle y=\frac{9}{7}({x+5})+2\)

\(\displaystyle y=\frac{7}{2}({x+5})+9\)

None of the above

\(\displaystyle y=\frac{5}{7}({x+2})+9\)

\(\displaystyle y=\frac{2}{7}({x+5})+9\)

Correct answer:

\(\displaystyle y=\frac{2}{7}({x+5})+9\)

Explanation:

In order to find \(\displaystyle y\) with respect to \(\displaystyle x\), we first isolate \(\displaystyle t\) in both equations:\(\displaystyle x=7t-5\rightarrow t=\frac{x+5}{7}\)

\(\displaystyle y=2t+9\rightarrow t=\frac{y-9}{2}\)

Since both equations equal \(\displaystyle t\), we can then set them equal to each other and solve for \(\displaystyle y\):

\(\displaystyle \frac{y-9}{2}=\frac{x+5}{7}\)

\(\displaystyle {y-9}=2(\frac{x+5}{7})\)

\(\displaystyle y=\frac{2}{7}({x+5})+9\)

Example Question #7 : Parametric, Polar, And Vector

Given \(\displaystyle x=4t+9\) and \(\displaystyle y=-t+2\), what is \(\displaystyle y\) in terms of \(\displaystyle x\) (rectangular form)? 

Possible Answers:

\(\displaystyle y=\frac{x-17}{4}\)

\(\displaystyle y=\frac{4-x}{17}\)

None of the above

\(\displaystyle y=\frac{17-x}{4}\)

\(\displaystyle y=\frac{x-4}{17}\)

Correct answer:

\(\displaystyle y=\frac{17-x}{4}\)

Explanation:

In order to find \(\displaystyle y\) with respect to \(\displaystyle x\), we first isolate \(\displaystyle t\) in both equations:\(\displaystyle x=4t+9\rightarrow t=\frac{x-9}{4}\)

\(\displaystyle y=-t+2\rightarrow t=2-y\)

Since both equations equal \(\displaystyle t\), we can then set them equal to each other and solve for \(\displaystyle y\):

\(\displaystyle 2-y=\frac{x-9}{4}\)

\(\displaystyle y=2-\frac{x-9}{4}\)

\(\displaystyle y=\frac{8}{4}-\frac{x-9}{4}\)

\(\displaystyle y=\frac{8-(x-9)}{4}\)

\(\displaystyle y=\frac{8-(x-9)}{4}\)

\(\displaystyle y=\frac{8-x+9}{4}\)

\(\displaystyle y=\frac{17-x}{4}\)

Learning Tools by Varsity Tutors