Calculus 3 : Applications of Partial Derivatives

Study concepts, example questions & explanations for Calculus 3

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Tangent Planes And Linear Approximations

Find the linear approximation to \displaystyle z=6+\frac{x^2}{4}+\frac{y^2}{16} at \displaystyle (-2,4).

Possible Answers:

\displaystyle L(x,y)\approx -x+\frac{1}{2}y

\displaystyle L(x,y)\approx 4+x-\frac{1}{2}y

\displaystyle L(x,y)\approx 4+\frac{1}{2}y

\displaystyle L(x,y)\approx 4-x-\frac{1}{2}y

\displaystyle L(x,y)\approx 4-x+\frac{1}{2}y

Correct answer:

\displaystyle L(x,y)\approx 4-x+\frac{1}{2}y

Explanation:

The question is really asking for a tangent plane, so lets first find partial derivatives and then plug in the point.

\displaystyle f(x,y)=6+\frac{x^2}{4}+\frac{y^2}{16}\displaystyle f(-2,4)=6+\frac{(-2)^2}{4}+\frac{(4)^2}{16}=6+1+1=8

\displaystyle f_x(x,y)=\frac{x}{2}\displaystyle f_x(-2,4)=\frac{-2}{2}=-1

\displaystyle f_y(x,y)=\frac{y}{8}\displaystyle f_y(-2,4)=\frac{4}{8}=\frac{1}{2}

Remember that we need to build the linear approximation general equation which is as follows.

\displaystyle L(x,y)\approx f(x_0,y_0)+f_x(x_0,y_0)(x-x_0)+f_y(x_0,y_0)(y-y_0)

\displaystyle L(x,y)\approx 8-(x+2)+\frac{1}{2}(y-4)

\displaystyle L(x,y)\approx 8-x-2+\frac{1}{2}y-2

\displaystyle L(x,y)\approx 4-x+\frac{1}{2}y

Example Question #1 : Tangent Planes And Linear Approximations

Find the tangent plane to the function \displaystyle f(x,y) = 2xy+e^{-x} at the point \displaystyle (0,1,1).

Possible Answers:

\displaystyle y-z=-1

\displaystyle x+y=1

\displaystyle x-z=2

\displaystyle -x+z=1

\displaystyle y-z=0

Correct answer:

\displaystyle -x+z=1

Explanation:

To find the equation of the tangent plane, we use the formula

\displaystyle z- z_0 = f_x(x_0,y_0)(x-x_0)+f_y(x_0,y_0)(y-y_0).

Taking partial derivatives, we have

\displaystyle f_x(x,y) = \displaystyle 2y-e^{-x}

\displaystyle f_y(x,y) = 2x

Substituting our \displaystyle x, y values into these, we get

\displaystyle f_x(0,1) =1

\displaystyle f_y(0,1) = 0

Substituting our point into \displaystyle x_0, y_0, z_0, and partial derivative values in the formula we get

\displaystyle z - 1 = 1(x-0)+0(y-1)

\displaystyle z - 1 = x

\displaystyle -x+z =1.

 

Example Question #1 : Applications Of Partial Derivatives

Find the Linear Approximation to \displaystyle z=2+\frac {x^2}{9}+\frac {y^2}{4} at \displaystyle (-3,2).

Possible Answers:

\displaystyle 4+\frac {2}{3}(x+3)+(y-2)

\displaystyle 4-\frac {2}{3}(x+3)+(y+2)

\displaystyle -4+\frac {2}{3}(x+3)+(y-1)

None of the Above

Correct answer:

\displaystyle 4+\frac {2}{3}(x+3)+(y-2)

Explanation:

We are just asking for the equation of the tangent plane:

Step 1: Find \displaystyle f(x,y)

\displaystyle f(x,y)=2+\frac {(-3)^2}{9}+\frac {2^2}{4}=2+\frac {9}{9}+\frac {4}{4}=2+1+1=4

Step 2: Take the partial derivative of \displaystyle \frac {x^2}{9} with respect with (x,y):

\displaystyle \partial(\frac {x^2}{9})=\frac {2x}{9}

Step 3: Evaluate the partial derivative of x at \displaystyle -3

\displaystyle \frac {2(3)}{9}=\frac {6}{9}=\frac {2}{3}

Step 4: Take the partial derivative of \displaystyle \frac {y^2}{4} with respect to \displaystyle (x,y):

\displaystyle \partial (\frac{y^2}{4})=\frac {2y}{4}

Step 5: Evaluate the partial derivative at \displaystyle y=2

\displaystyle \frac {2(2)}{4}=\frac {4}{4}=1.

Step 6: Convert (x,y) back into binomials:

\displaystyle x\rightarrow (x+3)
\displaystyle y\rightarrow (y-2)

Step 7: Write the equation of the tangent line:

\displaystyle 4+\frac {2}{3}(x+3)+(y-2)

Example Question #3 : Tangent Planes And Linear Approximations

Find the equation of the plane tangent to \displaystyle z=2x^2+4y^3 at the point \displaystyle (1,5).

Possible Answers:

\displaystyle z=4x+300y-1002

\displaystyle z=x+30y-10

\displaystyle z=2x+300y-100

\displaystyle z=4x^2+3y^3-1002

Correct answer:

\displaystyle z=4x+300y-1002

Explanation:

To find the equation of the tangent plane, we find: \displaystyle f_x,f_y,z_0 and evaluate \displaystyle f_x, f_y at the point given. \displaystyle f_x=\frac{\partial }{\partial x}(2x^2+4y^3)=4x\displaystyle f_y=\frac{\partial }{\partial y}(2x^2+4y^3)=12y^2, and \displaystyle z_0=2(1^2)+4(5^3)=502. Evaluating \displaystyle f_x, f_y at the point \displaystyle (1,5) gets us \displaystyle f_x=4, f_y=300. We then plug these values into the formula for the tangent plane: \displaystyle z-z_0=f_x(x_0,y_0)(x-x_0)+f_y(x_0,y_0)(y-y_0). We then get \displaystyle z-502=4(x-1)+300(y-5). The equation of the plane then becomes, through algebra, \displaystyle z=4x+300y-1002

Example Question #5 : Tangent Planes And Linear Approximations

Find the equation of the plane tangent to \displaystyle z=3\sin(x)+2\cos(y) at the point \displaystyle (\frac{\pi}{2},\frac{\pi}{6})

Possible Answers:

\displaystyle z=y-\frac{\pi}{6}

\displaystyle z=-y+\frac{\pi}{6}+3+\sqrt3

\displaystyle z=x-\frac{\pi}{3}+3+\sqrt3

\displaystyle z=y-\frac{\pi}{3}+2+\sqrt3

Correct answer:

\displaystyle z=-y+\frac{\pi}{6}+3+\sqrt3

Explanation:

To find the equation of the tangent plane, we find: \displaystyle f_x,f_y,z_0 and evaluate \displaystyle f_x, f_y at the point given. \displaystyle f_x=\frac{\partial }{\partial x}(3\sin(x)+2(\cos(y))=3\cos(x)\displaystyle f_y=\frac{\partial }{\partial y}(3\sin(x)+2\cos(y))=-2\sin(y), and \displaystyle z_0=3\sin(\frac{\pi}{2})+2\cos(\frac{\pi}{6})=3+\sqrt3. Evaluating \displaystyle f_x, f_y at the point \displaystyle (\frac{\pi}{2},\frac{\pi}{6}) gets us \displaystyle f_x=0, f_y=-1. We then plug these values into the formula for the tangent plane: \displaystyle z-z_0=f_x(x_0,y_0)(x-x_0)+f_y(x_0,y_0)(y-y_0). We then get \displaystyle z-(3+\sqrt3)=0(x-\frac{\pi}{2})+-1(y-\frac{\pi}{6}). The equation of the plane then becomes, through algebra, \displaystyle z=-y+\frac{\pi}{6}+3+\sqrt3

Example Question #6 : Tangent Planes And Linear Approximations

Find the equation of the tangent plane to \displaystyle z=3x^2y at the point \displaystyle (2,4)

Possible Answers:

\displaystyle z=x+36y

\displaystyle z=48x+12y-96

\displaystyle z=48x-12

\displaystyle z=5x+50y

Correct answer:

\displaystyle z=48x+12y-96

Explanation:

To find the equation of the tangent plane, we need 5 things:\displaystyle f_x,f_y,z(x,y),f_x(x,y),f_y(x,y)

\displaystyle f_x=\frac{\partial }{\partial x}(3x^2y)=6xy

\displaystyle f_x(2,4)=6*2*4=48

\displaystyle f_y=\frac{\partial }{\partial y}(3x^2y)=3x^2

\displaystyle f_y(2,4)=3(2)^2=12

\displaystyle z(2,4)=3(2)^2(4)=48

Using the equation of the tangent plane

\displaystyle z-z(x,y)=f_x(x,y)(x-x_0)+f_y(x,y)(y-y_0), we get

\displaystyle z-48=48(x-2)+12(y-4)

Through algebraic manipulation to get z by itself, we get

\displaystyle z=48x+12y-96

Example Question #1 : Applications Of Partial Derivatives

Find the absolute minimums and maximums of \displaystyle f(x,y)=10x^2-3y^2+10y on the disk of radius \displaystyle 4\displaystyle x^2+y^2\leq16.

Possible Answers:

Absolute Minimum: \displaystyle (0,4)

Absolute Maximum:\displaystyle \Big(\sqrt{\frac{2679}{169}}, \frac{5}{13}\Big)

Absolute Minimum: \displaystyle (0,-4)

Absolute Maximum: \displaystyle \Big(-\sqrt{\frac{2679}{169}}, \frac{5}{13}\Big)

Absolute Minimum: \displaystyle (0,-4)

Absolute Maximum:  \displaystyle \Big(\sqrt{\frac{2679}{169}}, \frac{5}{13}\Big)

Absolute Minimum: \displaystyle (0,4)

Absolute Maximum: \displaystyle \Big(-\sqrt{\frac{2679}{169}}, \frac{5}{13}\Big)\displaystyle \Big(\sqrt{\frac{2679}{169}}, \frac{5}{13}\Big)

Absolute Minimum: \displaystyle (0,-4)

Absolute Maximum: \displaystyle \Big(-\sqrt{\frac{2679}{169}}, \frac{5}{13}\Big)\displaystyle \Big(\sqrt{\frac{2679}{169}}, \frac{5}{13}\Big)

Correct answer:

Absolute Minimum: \displaystyle (0,-4)

Absolute Maximum: \displaystyle \Big(-\sqrt{\frac{2679}{169}}, \frac{5}{13}\Big)\displaystyle \Big(\sqrt{\frac{2679}{169}}, \frac{5}{13}\Big)

Explanation:

The first thing we need to do is find the partial derivative in respect to \displaystyle x, and \displaystyle y.

\displaystyle \frac{\partial}{\partial x}=20x\displaystyle \frac{\partial}{\partial y}=-6y+10

 

We need to find the critical points, so we set each of the partials equal to \displaystyle 0.

\displaystyle 0=20x\rightarrow x=0

\displaystyle 0=-6y+10 \rightarrow y=\frac{5}{3}

We only have one critical point at \displaystyle f\Big(0, \frac{5}{3}\Big), now we need to find the function value in order to see if it is inside or outside the disk.

\displaystyle f\Big(0, \frac{5}{3}\Big)=10(0)^2-3\Big(\frac{5}{3}\Big)^2+10\Big(\frac{5}{3}\Big)=\frac{25}{3}\approx8.33333

This is within our disk.

 

We now need to take a look at the boundary, \displaystyle x^2+y^2=16. We can solve for \displaystyle x^2, and plug it into \displaystyle f.

\displaystyle x^2+y^2=16

\displaystyle x^2=16-y^2

\displaystyle g(y)=10(16-y^2)-3y^2+10y=-13y^2+10y+160

We will need to find the absolute extrema of this function on the range \displaystyle -4\leq y \leq 4. We need to find the critical points of this function.

\displaystyle g'(y)=-26y+10

\displaystyle 0=-26y+10 \rightarrow y=\frac{5}{13}

The function value at the critical points and end points are:

\displaystyle g(-4)=-13(-4)^2+10(-4)+160=-88

\displaystyle g(4)=-13(4)^2+10(4)+160=-8

\displaystyle g\Big(\frac{5}{13}\Big)=-13\Big(\frac{5}{13}\Big)^2+10\Big(\frac{5}{13}\Big)+160=\frac{2105}{13}\approx161.92

Now we need to figure out the values of \displaystyle x these correspond to.

\displaystyle y=-4: x^2=(-4)^2-16 \rightarrow x^2=0\rightarrow x=0

\displaystyle y=4: x^2=4^2-16 \rightarrow x^2=0\rightarrow x=0

\displaystyle y=\frac{5}{13}: x^2=\Big(\frac{5}{13}\Big)^2-16 \rightarrow x^2=\frac{2679}{169}\rightarrow x\approx\pm\ 3.98

Now lets summarize our results as follows:

\displaystyle g(-4)=-88 \rightarrow f(0,-4)=-88

\displaystyle g(4)=-8 \rightarrow f(0,4)=-8

\displaystyle g\Big(\frac{5}{13}\Big)=\frac{2105}{13} \rightarrow f\Big(-\sqrt{\frac{2679}{169}},\frac{5}{13}\Big)=\frac{2105}{13}

\displaystyle g\Big(\frac{5}{13}\Big)=\frac{2105}{13} \rightarrow f\Big(\sqrt{\frac{2679}{169}},\frac{5}{13}\Big)=\frac{2105}{13}

 

From this we can conclude that there is an absolute minimum at \displaystyle (0,-4), and two absolute maximums at \displaystyle \Big(-\sqrt{\frac{2679}{169}}, \frac{5}{13}\Big) and \displaystyle \Big(\sqrt{\frac{2679}{169}}, \frac{5}{13}\Big).

Example Question #1 : Lagrange Multipliers

Find the minimum and maximum of \displaystyle f(x,y)=2x-5y, subject to the constraint \displaystyle x^2+y^2=144.

Possible Answers:

\displaystyle f(4.46,11.14) is a maximum

\displaystyle f(-4.46,-11.14) is a minimum

There are no maximums or minimums

\displaystyle f(-4.46,11.14) is a maximum

\displaystyle f(4.46,-11.14) is a minimum

 

\displaystyle f(4.46,-11.14) is a maximum

\displaystyle f(-4.46,11.14) is a minimum

\displaystyle f(4.46,11.14) is a maximum

\displaystyle f(4.46,-11.14) is a minimum

Correct answer:

\displaystyle f(4.46,-11.14) is a maximum

\displaystyle f(-4.46,11.14) is a minimum

Explanation:

First we need to set up our system of equations.

\displaystyle 2=2\lambda x \rightarrow x=\frac{1}{\lambda}

\displaystyle -5=2\lambda y \rightarrow y=-\frac{5}{2 \lambda}

\displaystyle x^2+y^2=144

Now lets plug in these constraints.

\displaystyle (\frac{1}{\lambda})^2+(-\frac{5}{2\lambda})^2=144

 \displaystyle \frac{1}{\lambda ^2}+\frac{25}{4\lambda^2}=144

\displaystyle \frac{29}{4\lambda^2}=144

Now we solve for \displaystyle \lambda

\displaystyle \frac{29}{4\lambda^2}=144\rightarrow \lambda^2=\frac{29}{576}\rightarrow\lambda=\pm\sqrt{\frac{29}{576}}

If

 \displaystyle \lambda=\sqrt{\frac{29}{576}}

\displaystyle x=\frac{1}{\sqrt{\frac{29}{576}}}\approx 4.46\displaystyle y=-\frac{5}{2\sqrt{\frac{29}{576}}}\approx -11.14

 

If

 \displaystyle \lambda=-\sqrt{\frac{29}{576}}

\displaystyle x=\frac{1}{\sqrt{\frac{29}{576}}}\approx -4.46\displaystyle y=-\frac{5}{2\sqrt{\frac{29}{576}}}\approx 11.14

 

Now lets plug in these values of \displaystyle x, and \displaystyle y into the original equation.

\displaystyle f(4.46,-11.14)=2(4.46)-5(-11.14)=64.62

\displaystyle f(-4.46,11.14)=2(-4.46)-5(11.14)=-64.62

 

We can conclude from this that \displaystyle f(4.46,-11.14) is a maximum, and \displaystyle f(-4.46,11.14) is a minimum.

Example Question #1 : Applications Of Partial Derivatives

Find the absolute minimum value of the function \displaystyle f(x,y) = x^2+y^2 subject to the constraint \displaystyle x^2 +2y^2 = 1.

Possible Answers:

\displaystyle 0

\displaystyle 1

\displaystyle 2\sqrt2

\displaystyle \frac{1}{2}

\displaystyle \sqrt2

Correct answer:

\displaystyle \frac{1}{2}

Explanation:

Let \displaystyle g = x^2 +2y^2To find the absolute minimum value, we must solve the system of equations given by

.

So this system of equations is

\displaystyle f_x = \lambda g_x, \displaystyle f_y = \lambda g_y, \displaystyle g =1.

Taking partial derivatives and substituting as indicated, this becomes

\displaystyle 2x = \lambda(2x), 2y = \lambda(4y), x^2+2y^2 = 1.

From the left equation, we see either \displaystyle x=0 or \displaystyle \lambda = 1. If \displaystyle x=0, then substituting this into the other equations, we can solve for \displaystyle y, \lambda, and get \displaystyle y = \pm \sqrt{2}/2, \displaystyle \lambda = 1/2, giving two extreme candidate points at \displaystyle (0, \frac{\sqrt{2}}{2}), (0, -\frac{\sqrt{2}}{2}).

On the other hand, if instead \displaystyle \lambda =1, this forces \displaystyle y = 0 from the 2nd equation, and \displaystyle x = \pm 1 from the 3rd equation. This gives us two more extreme candidate points; \displaystyle (-1,0),(1,0).

 

Taking all four of our found points, and plugging them back into \displaystyle f, we have

\displaystyle f(-1,0) = 1, f(1,0) = 1, f(0,\frac{\sqrt{2}}{2}) = \frac{1}{2}, f(0,-\frac{\sqrt{2}}{2}) = \frac{1}{2}.

Hence the absolute minimum value is \displaystyle \frac{1}{2}.

 

Example Question #1 : Applications Of Partial Derivatives

Find the dimensions of a box with maximum volume such that the sum of its edges is \displaystyle 60 cm.

Possible Answers:

\displaystyle 6 \times 6 \times 6

\displaystyle 5 \times 4 \times 3

\displaystyle 5 \times 5 \times 5

\displaystyle 6 \times 5 \times 4

Correct answer:

\displaystyle 5 \times 5 \times 5

Explanation:

Untitled

Learning Tools by Varsity Tutors