Common Core: 1st Grade Math : Understanding the Associative Property

Study concepts, example questions & explanations for Common Core: 1st Grade Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Understanding The Associative Property

Which is an example of associative property? 

Possible Answers:

\displaystyle 5+2=3 and \displaystyle 2+5=3

\displaystyle 6+4+3=13 and \displaystyle 8+6=13

\displaystyle 6+4+3=13 and \displaystyle 10+3=13

     

\displaystyle 3+2=5 and \displaystyle 2+3=5

Correct answer:

\displaystyle 6+4+3=13 and \displaystyle 10+3=13

     

Explanation:

The associative property says that you can group a set of numbers in a series, and still get the same answer. If we group \displaystyle 6+4 to get \displaystyle 10, and then add \displaystyle 10+3 we get a sum of \displaystyle 13

Example Question #1483 : Common Core Math: Grade 1

Which is an example of associative property?

Possible Answers:

\displaystyle 7+3+3=13 and \displaystyle 10+3=13

     

\displaystyle 10+3=7 and \displaystyle 3+10=7

\displaystyle 7+3=10 and \displaystyle 3+7=10

\displaystyle 7+3+3=13 and \displaystyle 7+9=13

Correct answer:

\displaystyle 7+3+3=13 and \displaystyle 10+3=13

     

Explanation:

The associative property says that you can group a set of numbers in a series, and still get the same answer. If we group \displaystyle 7+3 to get \displaystyle 10, and then add \displaystyle 10+3 we get a sum of \displaystyle 13

Example Question #2 : Understanding The Associative Property

Which is an example of associative property?

Possible Answers:

\displaystyle 6+8+4=18 and \displaystyle 10+8=18

 

\displaystyle 6+8+4=18 and \displaystyle 14+6=18

\displaystyle 6+8=14 and \displaystyle 8+6=14

\displaystyle 14+6=8 and \displaystyle 6+14=8

Correct answer:

\displaystyle 6+8+4=18 and \displaystyle 10+8=18

 

Explanation:

The associative property says that you can group a set of numbers in a series, and still get the same answer. If we group \displaystyle 6+4to get \displaystyle 10, and then add \displaystyle 10+8 we get a sum of \displaystyle 18

Example Question #3 : Understanding The Associative Property

Which is an example of associative property?

Possible Answers:

\displaystyle 13+4=9 and \displaystyle 4+13=9

\displaystyle 4+9=1 and \displaystyle 9+4=13

\displaystyle 4+9+1=14 and \displaystyle 10+4=14

 

\displaystyle 4+9+1=14 and \displaystyle 6+9=14

Correct answer:

\displaystyle 4+9+1=14 and \displaystyle 10+4=14

 

Explanation:

The associative property says that you can group a set of numbers in a series, and still get the same answer. If we group \displaystyle 9+1 to get \displaystyle 10, and then add \displaystyle 10+4we get a sum of \displaystyle 14

Example Question #4 : Understanding The Associative Property

Which is an example of associative property?

Possible Answers:

\displaystyle 9+7=16 and \displaystyle 7+9=16

\displaystyle 16+7=9 and \displaystyle 7+16=9

\displaystyle 9+7+3=19 and \displaystyle 17+3=19

\displaystyle 9+7+3=19 and \displaystyle 9+10=19

  

Correct answer:

\displaystyle 9+7+3=19 and \displaystyle 9+10=19

  

Explanation:

The associative property says that you can group a set of numbers in a series, and still get the same answer. If we group \displaystyle 7+3 to get \displaystyle 10, and then add \displaystyle 10+9 we get a sum of \displaystyle 19

Example Question #5 : Understanding The Associative Property

Which is an example of the associative property?

Possible Answers:

\displaystyle 6+3=9 and \displaystyle 3+6=9

\displaystyle 6+(3+2)=11 and \displaystyle (6+3) + 2 = 11

\displaystyle 6+5=11 and \displaystyle 6=11-5

\displaystyle 6+3+2=11 and \displaystyle 6+6=11

Correct answer:

\displaystyle 6+(3+2)=11 and \displaystyle (6+3) + 2 = 11

Explanation:

The associative property says that, when you are only adding or only multiplying, the way you group the items in a series does not matter.  Given 6 + 3 + 2 = 11, whether you group (6 + 3) + 2 or 6 + (3 + 2), the outcome does not change as the order in which you sum the numbers does not matter.

Learning Tools by Varsity Tutors