Common Core: 2nd Grade Math : Subtract within 1000

Study concepts, example questions & explanations for Common Core: 2nd Grade Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #2132 : Common Core Math: Grade 2

Solve:

\(\displaystyle \frac{\begin{array}[b]{r}683\\ -\ 347\end{array}}{\space }\)

Possible Answers:

\(\displaystyle 334\)

\(\displaystyle 333\)

\(\displaystyle 335\)

\(\displaystyle 336\)

Correct answer:

\(\displaystyle 336\)

Explanation:

When we subtract multi-digit numbers, we start with the digits in the ones place and move to the left. 

Let's look at the numbers in the ones place:

\(\displaystyle \frac{\begin{array}[b]{r}3\\ -\ 7\end{array}}{\ \ \ }\)

When the top number is smaller than the bottom number, we have to borrow from the number to the left because we can't take \(\displaystyle 7\) away from \(\displaystyle 3\) since \(\displaystyle 3\) is the smaller number. In this case, we are going to look to the \(\displaystyle 8\). We only ever need to take \(\displaystyle 1\) away from the number to the left. For this problem, that will leave us with a \(\displaystyle 7\) to replace the \(\displaystyle 8\). So far, your work should look something like this:

\(\displaystyle \frac{\begin{array}[b]{r}6 ^{7}\not8 \ \ \ 3\\ -\ 3\ \ \ 4\ \ \ 7\end{array}}{\space }\)

Remember, we've borrowed \(\displaystyle 1\) from the tens place, so we can put a \(\displaystyle 1\) in front of the number in the ones place. So far, your work should look something like this:

\(\displaystyle \frac{\begin{array}[b]{r}6 ^{7}\not8 \ ^{13}\not3\\ -\ 3 \ \ \ 4\ \ \ \ \ 7\end{array}}{\space }\)

Now, let's subtract the numbers in the ones place:

\(\displaystyle \frac{\begin{array}[b]{r}13\\ -\ 7\end{array}}{\ \ \ 6 }\)

Next, let's look at the numbers in the tens place:

\(\displaystyle \frac{\begin{array}[b]{r}7\\ -\ 4\end{array}}{\ \ \ 3 }\)

Finally, we can subtract the numbers in the hundreds place:

\(\displaystyle \frac{\begin{array}[b]{r}6\\ -\ 3\end{array}}{\ \ \ 3}\)

Your final answer should be \(\displaystyle 336\)

\(\displaystyle \frac{\begin{array}[b]{r}6 ^{7}\not8 \ ^{13}\not3\\ -\ 3 \ \ \ 4\ \ \ \ \ 7\end{array}}{\ \ \ 3\ \ \ 3\ \ \ \ 6 }\)

Example Question #2133 : Common Core Math: Grade 2

Solve:

\(\displaystyle \frac{\begin{array}[b]{r}817\\ -\ 670\end{array}}{\space }\)

Possible Answers:

\(\displaystyle 146\)

\(\displaystyle 148\)

\(\displaystyle 147\)

\(\displaystyle 145\)

Correct answer:

\(\displaystyle 147\)

Explanation:

When we subtract multi-digit numbers, we start with the digits in the ones place and move to the left. 

Let's look at the numbers in the ones place:

\(\displaystyle \frac{\begin{array}[b]{r}7\\ -\ 0\end{array}}{\ \ \ 7 }\)

Next, let's look at the numbers in the tens place:

\(\displaystyle \frac{\begin{array}[b]{r}1\\ -\ 7\end{array}}{\ \ \ }\)

When the top number is smaller than the bottom number, we have to borrow from the number to the left because we can't take \(\displaystyle 7\) away from \(\displaystyle 1\) since \(\displaystyle 1\) is the smaller number. In this case, we are going to look to the \(\displaystyle 8\). We only ever need to take \(\displaystyle 1\) away from the number to the left. For this problem, that will leave us with a \(\displaystyle 7\) to replace the \(\displaystyle 8\). So far, your work should look something like this:

\(\displaystyle \frac{\begin{array}[b]{r}^{7}\not817\\ -\ 670\end{array}}{\space }\)

Remember, we've borrowed \(\displaystyle 1\) from the hundreds place, so we can put a \(\displaystyle 1\) in front of the number in the tens place. So far, your work should look something like this:

\(\displaystyle \frac{\begin{array}[b]{r}^{7} \not8\ ^{11}\not1\ \ \ \ \ 7\\ -\ 6 \ \ \ \ \ 7\ \ \ \ \ 0\end{array}}{\space }\)

Now, we can subtract the numbers in the tens place:

\(\displaystyle \frac{\begin{array}[b]{r}11\\ -\ 7\end{array}}{\ \ \ 4}\)

Next, we can subtract the numbers in the hundreds place:

\(\displaystyle \frac{\begin{array}[b]{r}7\\ -\ 6\end{array}}{\ \ \ 1}\)

Your final answer should be \(\displaystyle 147\)

\(\displaystyle \frac{\begin{array}[b]{r}^{7} \not8\ ^{11}\not1\ \ \ \ \ 7\\ -\ 6 \ \ \ \ \ 7\ \ \ \ \ 0\end{array}}{\ \ \ 1\ \ \ \ \ 4\ \ \ \ \ \ 7}\)

Example Question #2134 : Common Core Math: Grade 2

Solve:

\(\displaystyle \frac{\begin{array}[b]{r}316\\ -\ 250\end{array}}{\space }\)

Possible Answers:

\(\displaystyle 66\)

\(\displaystyle 68\)

\(\displaystyle 65\)

\(\displaystyle 67\)

Correct answer:

\(\displaystyle 66\)

Explanation:

When we subtract multi-digit numbers, we start with the digits in the ones place and move to the left. 

Let's look at the numbers in the ones place:

\(\displaystyle \frac{\begin{array}[b]{r}6\\ -\ 0\end{array}}{\ \ \ 6 }\)

Next, let's look at the numbers in the tens place:

\(\displaystyle \frac{\begin{array}[b]{r}1\\ -\ 5\end{array}}{\ \ \ }\)

When the top number is smaller than the bottom number, we have to borrow from the number to the left because we can't take \(\displaystyle 5\) away from \(\displaystyle 1\) since \(\displaystyle 1\) is the smaller number. In this case, we are going to look to the \(\displaystyle 3\). We only ever need to take \(\displaystyle 1\) away from the number to the left. For this problem, that will leave us with a \(\displaystyle 2\) to replace the \(\displaystyle 3\). So far, your work should look something like this:

\(\displaystyle \frac{\begin{array}[b]{r}^{2} \not316\\ -\ 250\end{array}}{\space }\)

Remember, we've borrowed \(\displaystyle 1\) from the hundreds place, so we can put a \(\displaystyle 1\) in front of the number in the tens place. So far, your work should look something like this:

\(\displaystyle \frac{\begin{array}[b]{r}^{2} \not3\ ^{11}\not1\ \ \ \ \ 6\\ -\ 2 \ \ \ \ \ 5\ \ \ \ \ 0\end{array}}{\space }\)

Now, we can subtract the numbers in the tens place:

\(\displaystyle \frac{\begin{array}[b]{r}11\\ -\ 5\end{array}}{\ \ \ 6}\)

Next, we can subtract the numbers in the hundreds place:

\(\displaystyle \frac{\begin{array}[b]{r}2\\ -\ 2\end{array}}{\ \ \ 0}\)

Your final answer should be \(\displaystyle 66\)

\(\displaystyle \frac{\begin{array}[b]{r}^{2} \not3\ ^{11}\not1\ \ \ \ \ 6\\ -\ 2 \ \ \ \ \ 5\ \ \ \ \ 0\end{array}}{\ \ \ \ \ \ \ \ \ \ 6\ \ \ \ \ 6}\)

Example Question #2135 : Common Core Math: Grade 2

Solve:

\(\displaystyle \frac{\begin{array}[b]{r}325\\ -\ 289\end{array}}{\space }\)

Possible Answers:

\(\displaystyle 36\)

\(\displaystyle 37\)

\(\displaystyle 38\)

\(\displaystyle 35\)

Correct answer:

\(\displaystyle 36\)

Explanation:

When we subtract multi-digit numbers, we start with the digits in the ones place and move to the left. 

Let's look at the numbers in the ones place:

\(\displaystyle \frac{\begin{array}[b]{r}5\\ -\ 9\end{array}}{\ \ \ }\)

When the top number is smaller than the bottom number, we have to borrow from the number to the left because we can't take \(\displaystyle 9\) away from \(\displaystyle 5\) since \(\displaystyle 5\) is the smaller number. In this case, we are going to look to the \(\displaystyle 2\). We only ever need to take \(\displaystyle 1\) away from the number to the left. For this problem, that will leave us with a \(\displaystyle 1\) to replace the \(\displaystyle 2\). So far, your work should look something like this:

\(\displaystyle \frac{\begin{array}[b]{r}3 ^{1}\not2 \ \ \ 5\\ -\ 2\ \ \ 8\ \ \ 9\end{array}}{\space }\)

Remember, we've borrowed \(\displaystyle 1\) from the tens place, so we can put a \(\displaystyle 1\) in front of the number in the ones place. So far, your work should look something like this:

\(\displaystyle \frac{\begin{array}[b]{r}3 ^{1}\not2 \ ^{15}\not5\\ -\ 2 \ \ \ 8\ \ \ \ \ 9\end{array}}{\space }\)

Now, let's subtract the numbers in the ones place:

\(\displaystyle \frac{\begin{array}[b]{r}15\\ -\ 9\end{array}}{\ \ \ 6 }\)

Next, let's look at the numbers in the tens place:

\(\displaystyle \frac{\begin{array}[b]{r}1\\ -\ 8\end{array}}{\ \ \ }\)

When the top number is smaller than the bottom number, we have to borrow from the number to the left because we can't take \(\displaystyle 8\) away from \(\displaystyle 1\) since \(\displaystyle 1\) is the smaller number. In this case, we are going to look to the \(\displaystyle 3\). We only ever need to take \(\displaystyle 1\) away from the number to the left. For this problem, that will leave us with a \(\displaystyle 2\) to replace the \(\displaystyle 3\). So far, your work should look something like this:

\(\displaystyle \frac{\begin{array}[b]{r}^{2}\not3 ^{1}\not2 \ ^{15}\not5\\ -\ 2 \ \ \ 8\ \ \ \ \ 9\end{array}}{\space }\)

Remember, we've borrowed \(\displaystyle 1\) from the hundreds place, so we can put a \(\displaystyle 1\) in front of the number in the tens place. So far, your work should look something like this:

\(\displaystyle \frac{\begin{array}[b]{r}^{2}\not3 ^{11}\not2 \ ^{15}\not5\\ -\ 2 \ \ \ 8\ \ \ \ \ 9\end{array}}{\space }\)

Now, let's subtract the numbers in the tens place:

\(\displaystyle \frac{\begin{array}[b]{r}11\\ -\ 8\end{array}}{\ \ \ 3 }\)

Finally, we can subtract the numbers in the hundreds place:

\(\displaystyle \frac{\begin{array}[b]{r}2\\ -\ 2\end{array}}{\ \ \ 0}\)

Your final answer should be \(\displaystyle 36\)

\(\displaystyle \frac{\begin{array}[b]{r}^{2}\not3 ^{11}\not2 \ ^{15}\not5\\ -\ 2 \ \ \ 8\ \ \ \ \ 9\end{array}}{\ \ \ \ \ \ \ \ 3\ \ \ \ \ 6 }\)

Example Question #2136 : Common Core Math: Grade 2

Solve:

\(\displaystyle \frac{\begin{array}[b]{r}818\\ -\ 181\end{array}}{\space }\)

Possible Answers:

\(\displaystyle 636\)

\(\displaystyle 635\)

\(\displaystyle 637\)

\(\displaystyle 634\)

Correct answer:

\(\displaystyle 637\)

Explanation:

When we subtract multi-digit numbers, we start with the digits in the ones place and move to the left. 

Let's look at the numbers in the ones place:

\(\displaystyle \frac{\begin{array}[b]{r}8\\ -\ 1\end{array}}{\ \ \ 7 }\)

Next, let's look at the numbers in the tens place:

\(\displaystyle \frac{\begin{array}[b]{r}1\\ -\ 8\end{array}}{\ \ \ }\)

When the top number is smaller than the bottom number, we have to borrow from the number to the left because we can't take \(\displaystyle 8\) away from \(\displaystyle 1\) since \(\displaystyle 1\) is the smaller number. In this case, we are going to look to the \(\displaystyle 8\). We only ever need to take \(\displaystyle 1\) away from the number to the left. For this problem, that will leave us with a \(\displaystyle 7\) to replace the \(\displaystyle 8\). So far, your work should look something like this:

\(\displaystyle \frac{\begin{array}[b]{r}^{7} \not818\\ -\ 181\end{array}}{\space }\)

Remember, we've borrowed \(\displaystyle 1\) from the hundreds place, so we can put a \(\displaystyle 1\) in front of the number in the tens place. So far, your work should look something like this:

\(\displaystyle \frac{\begin{array}[b]{r}^{7} \not8\ ^{11}\not1\ \ \ \ \ 8\\ -\ 1 \ \ \ \ \ 8\ \ \ \ \ 1\end{array}}{\space }\)

Now, we can subtract the numbers in the tens place:

\(\displaystyle \frac{\begin{array}[b]{r}11\\ -\ 8\end{array}}{\ \ \ 3}\)

Next, we can subtract the numbers in the hundreds place:

\(\displaystyle \frac{\begin{array}[b]{r}7\\ -\ 1\end{array}}{\ \ \ 6}\)

Your final answer should be \(\displaystyle 637\)

\(\displaystyle \frac{\begin{array}[b]{r}^{7} \not8\ ^{11}\not1\ \ \ \ \ 8\\ -\ 1 \ \ \ \ \ 8\ \ \ \ \ 1\end{array}}{\ \ \ 6 \ \ \ \ \ 3\ \ \ \ \ 7 }\)

 

Example Question #1 : Subtract Within 1000

Solve:

\(\displaystyle \frac{\begin{array}[b]{r}979\\ -\ 930\end{array}}{\space }\)

Possible Answers:

\(\displaystyle 48\)

\(\displaystyle 47\)

\(\displaystyle 49\)

\(\displaystyle 50\)

Correct answer:

\(\displaystyle 49\)

Explanation:

When we subtract multi-digit numbers, we start with the digits in the ones place and move to the left. 

Let's look at the numbers in the ones place:

\(\displaystyle \frac{\begin{array}[b]{r}9\\ -\ 0\end{array}}{\ \ \ 9 }\)

Next, let's look at the numbers in the tens place:

\(\displaystyle \frac{\begin{array}[b]{r}7\\ -\ 3\end{array}}{\ \ \ 4 }\)

 

Finally, we can subtract the numbers in the hundreds place:

\(\displaystyle \frac{\begin{array}[b]{r}9\\ -\ 9\end{array}}{\ \ \ 0}\)

Your final answer should be \(\displaystyle 49\)

\(\displaystyle \frac{\begin{array}[b]{r}979\\ -\ 930\end{array}}{\ \ \ \ \ 49}\)

Example Question #2 : Subtract Within 1000

Solve:

\(\displaystyle \frac{\begin{array}[b]{r}439\\ -\ 438\end{array}}{\space }\)

Possible Answers:

\(\displaystyle 3\)

\(\displaystyle 1\)

\(\displaystyle 4\)

\(\displaystyle 2\)

Correct answer:

\(\displaystyle 1\)

Explanation:

When we subtract multi-digit numbers, we start with the digits in the ones place and move to the left. 

Let's look at the numbers in the ones place:

\(\displaystyle \frac{\begin{array}[b]{r}9\\ -\ 8\end{array}}{\ \ \ 1 }\)

Next, let's look at the numbers in the tens place:

\(\displaystyle \frac{\begin{array}[b]{r}3\\ -\ 3\end{array}}{\ \ \ 0 }\)

 

Finally, we can subtract the numbers in the hundreds place:

\(\displaystyle \frac{\begin{array}[b]{r}4\\ -\ 4\end{array}}{\ \ \ 0}\)

Your final answer should be \(\displaystyle 1\)

\(\displaystyle \frac{\begin{array}[b]{r}439\\ -\ 438\end{array}}{\ \ \ \ \ \ \ 1}\)

Example Question #3 : Subtract Within 1000

Solve:

\(\displaystyle \frac{\begin{array}[b]{r}810\\ -\ 110\end{array}}{\space }\)

Possible Answers:

\(\displaystyle 700\)

\(\displaystyle 702\)

\(\displaystyle 701\)

\(\displaystyle 703\)

Correct answer:

\(\displaystyle 700\)

Explanation:

When we subtract multi-digit numbers, we start with the digits in the ones place and move to the left. 

Let's look at the numbers in the ones place:

\(\displaystyle \frac{\begin{array}[b]{r}0\\ -\ 0\end{array}}{\ \ \ 0 }\)

Next, let's look at the numbers in the tens place:

\(\displaystyle \frac{\begin{array}[b]{r}1\\ -\ 1\end{array}}{\ \ \ 0 }\)

 Finally, we can subtract the numbers in the hundreds place:

\(\displaystyle \frac{\begin{array}[b]{r}8\\ -\ 1\end{array}}{\ \ \ 7}\)

Your final answer should be \(\displaystyle 700\)

\(\displaystyle \frac{\begin{array}[b]{r}810\\ -\ 110\end{array}}{\ \ \ 700}\)

Example Question #4 : Subtract Within 1000

Solve:

\(\displaystyle \frac{\begin{array}[b]{r}596\\ -\ 335\end{array}}{\space }\)

Possible Answers:

\(\displaystyle 261\)

\(\displaystyle 260\)

\(\displaystyle 262\)

\(\displaystyle 263\)

Correct answer:

\(\displaystyle 261\)

Explanation:

When we subtract multi-digit numbers, we start with the digits in the ones place and move to the left. 

Let's look at the numbers in the ones place:

\(\displaystyle \frac{\begin{array}[b]{r}6\\ -\ 5\end{array}}{\ \ \ 1 }\)

Next, let's look at the numbers in the tens place:

\(\displaystyle \frac{\begin{array}[b]{r}9\\ -\ 3\end{array}}{\ \ \ 6 }\)

 Finally, we can subtract the numbers in the hundreds place:

\(\displaystyle \frac{\begin{array}[b]{r}5\\ -\ 3\end{array}}{\ \ \ 2}\)

Your final answer should be \(\displaystyle 261\)

\(\displaystyle \frac{\begin{array}[b]{r}596\\ -\ 335\end{array}}{\ \ \ \ 261}\)

Example Question #5 : Subtract Within 1000

Solve:

\(\displaystyle \frac{\begin{array}[b]{r}374\\ -\ 231\end{array}}{\space }\)

Possible Answers:

\(\displaystyle 140\)

\(\displaystyle 143\)

\(\displaystyle 142\)

\(\displaystyle 141\)

Correct answer:

\(\displaystyle 143\)

Explanation:

When we subtract multi-digit numbers, we start with the digits in the ones place and move to the left. 

Let's look at the numbers in the ones place:

\(\displaystyle \frac{\begin{array}[b]{r}4\\ -\ 1\end{array}}{\ \ \ 3 }\)

Next, let's look at the numbers in the tens place:

\(\displaystyle \frac{\begin{array}[b]{r}7\\ -\ 3\end{array}}{\ \ \ 4 }\)

 

Finally, we can subtract the numbers in the hundreds place:

\(\displaystyle \frac{\begin{array}[b]{r}3\\ -\ 2\end{array}}{\ \ \ 1}\)

Your final answer should be \(\displaystyle 143\)

\(\displaystyle \frac{\begin{array}[b]{r}374\\ -\ 231\end{array}}{\ \ \ \ 143}\)

Learning Tools by Varsity Tutors