Common Core: 8th Grade Math : Apply the Pythagorean Theorem to Determine Unknown Side Lengths in Right Triangles: CCSS.Math.Content.8.G.B.7

Study concepts, example questions & explanations for Common Core: 8th Grade Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Apply The Pythagorean Theorem To Determine Unknown Side Lengths In Right Triangles: Ccss.Math.Content.8.G.B.7

The base and height of a right triangle are each 1 inch. What is the hypotenuse?

Possible Answers:

\displaystyle 2

\displaystyle 0.5

\displaystyle 1

\displaystyle 4

\displaystyle \sqrt{2}

Correct answer:

\displaystyle \sqrt{2}

Explanation:

You need to use the Pythagorean Theorem, which is \displaystyle a^{2}+b^{^{2}} = c^{^{2}}.

Add the first two values and you get \displaystyle 2. Take the square root of both sides and you get \displaystyle \sqrt{2}.

Example Question #93 : Geometry

A right triangle has legs with lengths of \displaystyle 2 units and \displaystyle 5 units. What is the length of the hypotenuse?

Possible Answers:

\displaystyle 5.38 units

\displaystyle 29 units

\displaystyle 5.20 units

\displaystyle 4.64 units

Correct answer:

\displaystyle 5.38 units

Explanation:

\displaystyle \text{Hypotenuse}=\sqrt{\text{(leg 1)}^2+\text{(leg 2)}^2}

Using the numbers given to us by the question,

\displaystyle \text{Hypotenuse}=\sqrt{2^2+5^2}=\sqrt{29}=5.38 units

Example Question #1 : Apply The Pythagorean Theorem To Determine Unknown Side Lengths In Right Triangles: Ccss.Math.Content.8.G.B.7

A right triangle has legs with the lengths \displaystyle 4\:cm and \displaystyle 5\:cm. Find the length of the hypotenuse.

Possible Answers:

\displaystyle 3\:cm

\displaystyle \sqrt{35}\:cm

\displaystyle 41\:cm

\displaystyle \sqrt{41}\:cm

Correct answer:

\displaystyle \sqrt{41}\:cm

Explanation:

Use the Pythagorean Theorem to find the length of the hypotenuse.

\displaystyle (\text{Hypotenuse})^2=(\text{leg 1})^2+(\text{leg 2})^2

\displaystyle \text{Hypotenuse}=\sqrt{4^2+5^2}=\sqrt{41}\:cm

Example Question #2 : Apply The Pythagorean Theorem To Determine Unknown Side Lengths In Right Triangles: Ccss.Math.Content.8.G.B.7

Find the length of the hypotenuse in the right triangle below.

12

Possible Answers:

\displaystyle 22.78

\displaystyle 23.45

\displaystyle 6

\displaystyle 25.61

Correct answer:

\displaystyle 25.61

Explanation:

Use the Pythagorean Theorem to find the hypotenuse.

\displaystyle 16^2+20^2=\text{Hypotenuse}^2

\displaystyle 656=\text{Hypotenuse}^2

\displaystyle \sqrt{656}=25.61=\text{Hypotenuse}

Example Question #1 : How To Find The Length Of The Hypotenuse Of A Right Triangle : Pythagorean Theorem

If a right triangle has a base of \displaystyle 7  and a height of \displaystyle 4, what is the length of the hypotenuse?

Possible Answers:

\displaystyle \sqrt{11}

\displaystyle 65

\displaystyle \sqrt{14}

\displaystyle \sqrt{65}

\displaystyle 14

Correct answer:

\displaystyle \sqrt{65}

Explanation:

To solve this problem, we must utilize the Pythagorean Theorom, which states that:

\displaystyle a^{2}+b^{2}=c^{2}

We know that the base is \displaystyle 7, so we can substitute \displaystyle 7 in for \displaystyle a.  We also know that the height is \displaystyle 4, so we can substitute \displaystyle 4 in for \displaystyle b.


\displaystyle 7^{2}+4^{2}=c^{2}

Next we evaluate the exponents:

\displaystyle 7^{2}=49

\displaystyle 4^{2}=16

Now we add them together:

\displaystyle 49+16=65

Then, \displaystyle 65=c^{2}.

\displaystyle 65 is not a perfect square, so we simply write the square root as  \displaystyle \sqrt{65}.

\displaystyle c=\sqrt{65}

Example Question #2 : How To Find The Length Of The Hypotenuse Of A Right Triangle : Pythagorean Theorem

If a right triangle has a base of \displaystyle 3 and a height of \displaystyle 9, what is the length of the hypotenuse?

Possible Answers:

\displaystyle 144

\displaystyle 12

\displaystyle \sqrt{90}

\displaystyle 10

\displaystyle 90

Correct answer:

\displaystyle \sqrt{90}

Explanation:

To solve this problem, we are going to use the Pythagorean Theorom, which states that \displaystyle a^{2}+b^{2}=c^{2}.

We know that this particular right triangle has a base of \displaystyle 3, which can be substituted for \displaystyle a, and a height of \displaystyle 9, which can be substituted for \displaystyle b. If we rewrite the theorom using these numbers, we get:

\displaystyle 3^{2}+9^{2}=c^{2}

Next, we evaluate the expoenents:

\displaystyle 3^{2}=9

\displaystyle 9^{2}=81

\displaystyle 9+81=c^{2}

\displaystyle 9+81=90

Then, \displaystyle 90=c^{2}.

To solve for \displaystyle c, we must find the square root of \displaystyle 90. Since this is not a perfect square, our answer is simply \displaystyle c=\sqrt{90}.

Example Question #12 : Triangles

What is the hypotenuse of a right triangle with sides 5 and 8?

Possible Answers:

\displaystyle 89

\displaystyle \sqrt{89}

\displaystyle 100

undefined

\displaystyle 10

Correct answer:

\displaystyle \sqrt{89}

Explanation:

According to the Pythagorean Theorem, the equation for the hypotenuse of a right triangle is \displaystyle a^{2} + b^{2}=c^{2}. Plugging in the sides, we get \displaystyle 5^{2}+8^{2}=c^{2}. Solving for \displaystyle c, we find that the hypotenuse is \displaystyle \sqrt{89}:

\displaystyle 25+64=c^2

\displaystyle 89=c^2

Example Question #413 : Grade 8

In a right triangle, two sides have length \displaystyle 2t. Give the length of the hypotenuse in terms of \displaystyle t.

Possible Answers:

\displaystyle \sqrt{3}t

\displaystyle 2t

\displaystyle \sqrt{2}t

\displaystyle 2\sqrt{2}t

\displaystyle 2\sqrt{3}t

Correct answer:

\displaystyle 2\sqrt{2}t

Explanation:

By the Pythagorean Theorem, the square of the hypotenuse is equal to the sum of the squares of the other two sides.

Let \displaystyle c= hypotenuse and \displaystyle s= side length.

\displaystyle c^2=s^2+s^2\Rightarrow c^2=(2t)^2+(2t)^2\Rightarrow c^2=8t^2\Rightarrow c=\sqrt{8t^2}=2\sqrt{2}t

Example Question #14 : Triangles

In a right triangle, two sides have lengths 5 centimeters and 12 centimeters. Give the length of the hypotenuse.

Possible Answers:

\displaystyle 13\ cm

\displaystyle 14.5\ cm

\displaystyle 14\ cm

\displaystyle 13.5\ cm

\displaystyle 15\ cm

Correct answer:

\displaystyle 13\ cm

Explanation:

This triangle has two angles of 45 and 90 degrees, so the third angle must measure 45 degrees; this is therefore an isosceles right triangle.

By the Pythagorean Theorem, the square of the hypotenuse is equal to the sum of the squares of the other two sides.

Let \displaystyle c= hypotenuse and \displaystyle a, \displaystyle b= lengths of the other two sides.

\displaystyle c^2=a^2+b^2\Rightarrow c^2=5^2+12^2\Rightarrow c^2=25+144=169

\displaystyle \Rightarrow c=\sqrt{169}\Rightarrow c=13\ cm

Example Question #3 : Apply The Pythagorean Theorem To Determine Unknown Side Lengths In Right Triangles: Ccss.Math.Content.8.G.B.7

In a right triangle, the legs are 7 feet long and 12 feet long. How long is the hypotenuse?

Possible Answers:

\displaystyle 193

\displaystyle \sqrt{193}

\displaystyle 19

Correct answer:

\displaystyle \sqrt{193}

Explanation:

The pythagorean theory should be used to solve this problem. 

\displaystyle a^{2}+b^{2}+=c^{2}

\displaystyle 7^{2}+12^{2}+=c^{2}

\displaystyle 49+144=c^{2}

\displaystyle 193=c^{2}

\displaystyle \sqrt{193}=c

Learning Tools by Varsity Tutors