Common Core: 8th Grade Math : Solve Systems of Two Linear Equations: CCSS.Math.Content.8.EE.C.8b

Study concepts, example questions & explanations for Common Core: 8th Grade Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : How To Find The Solution For A System Of Equations

Solve the system for  and .

Possible Answers:

Correct answer:

Explanation:

The most simple method for solving systems of equations is to transform one of the equations so it allows for the canceling out of a variable. In this case, we can multiply  by  to get .

 Then, we can add to this equation to yield , so .

We can plug that value into either of the original equations; for example, .

So,  as well.

Example Question #1 : Solve Systems Of Two Linear Equations: Ccss.Math.Content.8.Ee.C.8b

What is the solution to the following system of equations:

Possible Answers:

Correct answer:

Explanation:

By solving one equation for , and replacing  in the other equation with that expression, you generate an equation of only 1 variable which can be readily solved.

Example Question #3 : How To Find The Solution For A System Of Equations

Solve this system of equations for :

 

Possible Answers:

None of the other choices are correct.

Correct answer:

Explanation:

Multiply the bottom equation by 5, then add to the top equation:

 

Example Question #2 : Solve Systems Of Two Linear Equations: Ccss.Math.Content.8.Ee.C.8b

Solve this system of equations for :

Possible Answers:

None of the other choices are correct.

Correct answer:

Explanation:

Multiply the top equation by :

Now add:

   

Example Question #3 : Solve Systems Of Two Linear Equations: Ccss.Math.Content.8.Ee.C.8b

Solve this system of equations for :

Possible Answers:

None of the other choices are correct.

Correct answer:

Explanation:

Multiply the top equation by :

Now add:

   

          

Example Question #151 : Systems Of Equations

Find the solution to the following system of equations.

Possible Answers:

Correct answer:

Explanation:

To solve this system of equations, use substitution. First, convert the second equation to isolate .

Then, substitute  into the first equation for .

Combine terms and solve for .

Now that we know the value of , we can solve for using our previous substitution equation.

Example Question #5 : How To Find The Solution For A System Of Equations

Find a solution for the following system of equations:

Possible Answers:

no solution

infinitely many solutions

Correct answer:

no solution

Explanation:

When we add the two equations, the  and  variables cancel leaving us with:

   which means there is no solution for this system.

Example Question #1 : Solve Systems Of Two Linear Equations: Ccss.Math.Content.8.Ee.C.8b

Solve the set of equations:

Possible Answers:

Correct answer:

Explanation:

Solve the first equation for :

Substitute into the second equation:

Multiply the entire equation by 2 to eliminate the fraction:

Using the value of , solve for :

Therefore, the solution is

Example Question #2 : Solve Systems Of Two Linear Equations: Ccss.Math.Content.8.Ee.C.8b

Solve the following system of equations:

Possible Answers:

Correct answer:

Explanation:

Set the two equations equal to one another:

2x - 2 = 3x + 6

Solve for x:

x = -8

Plug this value of x into either equation to solve for y.  We'll use the top equation, but either will work.

y = 2 * (-8) - 2

y = -18

Example Question #3 : Solve Systems Of Two Linear Equations: Ccss.Math.Content.8.Ee.C.8b

Solve this system of equations for :

Possible Answers:

None of the other choices are correct.

Correct answer:

Explanation:

Multiply the bottom equation by , then add to the top equation:

Divide both sides by 

 

Learning Tools by Varsity Tutors