All Common Core: High School - Algebra Resources
Example Questions
Example Question #13 : Seeing Structure In Expressions
Rewrite the following expression.
To rewrite the expression identify common factors that exist in both terms.
First identify the different terms.
Identify the factors of the terms.
Write a new, equivalent expression by factoring out a common term.
Example Question #14 : Seeing Structure In Expressions
Rewrite the following expression:
To rewrite the expression, first identify and interpret the individual parts.
Identify the various terms in the expression.
Now, recall the general form for exponents.
From there, expand the second term as follows.
From here combine the first term with the expanded second term to result in the final solution.
Example Question #15 : Seeing Structure In Expressions
Rewrite
To rewrite the expression, first identify and interpret the individual parts.
Identify the various terms in the expression.
Now, recall the general form for exponents.
Then, expand the second term as follows.
From here, combine the first term with the expanded second term to result in the final solution.
Example Question #13 : Seeing Structure In Expressions
Rewrite the following expression:
To rewrite the expression, first identify and interpret the individual parts.
Identify the various terms in the expression.
Now, recall the general form for exponents.
Then, expand the second term as follows.
From here combine the first term with the expanded second term to result in the final solution.
Example Question #14 : Seeing Structure In Expressions
Identify the equivalent expression.
To identify the equivalent expression first identify the different terms in the given expression.
Since there are numerous quantities in term two that are the same, the term can be written in exponential form.
Now, recall the general form for exponents.
Term two can be written as,
From here combine the terms together to find an equivalent expression.
Example Question #18 : Seeing Structure In Expressions
Identify the equivalent expression.
To identify the equivalent expression first identify the different terms that are in the given expression.
Since there are numerous quantities in term two that are the same, the term can be written in exponential form.
Now, recall the general form for exponents.
Term two can be written as,
From here combine the terms together to find an equivalent expression.
Example Question #15 : Seeing Structure In Expressions
Identify the equivalent expression.
To identify the equivalent expression first identify the different terms that are in the given expression.
Since there are numerous quantities in term two that are the same, the term can be written in exponential form.
Now, recall the general form for exponents.
Term two can be written as,
From here combine the terms together to find an equivalent expression.
Example Question #16 : Seeing Structure In Expressions
Identify the equivalent expression.
To identify the equivalent expression first identify the different terms that are in the given expression.
Since there are numerous quantities in term one that are the same, the term can be written in exponential form.
Now, recall the general form for exponents.
Term one and an equivalent expression can be written as,
Example Question #21 : Seeing Structure In Expressions
Identify the equivalent expression.
To identify the equivalent expression first identify the different terms that are in the given expression.
Since there are numerous quantities in term one that are the same, the term can be written in exponential form.
Now, recall the general form for exponents.
Term one can be written as,
Combine the two terms together to find an equivalent expression.
Example Question #22 : Seeing Structure In Expressions
Rewrite the following expression:
To rewrite the expression, first identify and interpret the individual parts of the given expression.
Identify the various terms in the expression.
Now, recall the general form for exponents.
Expand the term as follows to get an equivalent expression.
Certified Tutor