Common Core: High School - Geometry : Derive Parabola Equation: CCSS.Math.Content.HSG-GPE.A.2

Study concepts, example questions & explanations for Common Core: High School - Geometry

varsity tutors app store varsity tutors android store

All Common Core: High School - Geometry Resources

6 Diagnostic Tests 114 Practice Tests Question of the Day Flashcards Learn by Concept

Example Questions

Example Question #1 : Derive Parabola Equation: Ccss.Math.Content.Hsg Gpe.A.2

Find the parabolic equation, where the focus and directrix are as follows.

 

Possible Answers:

Correct answer:

Explanation:

The first step to solving this problem, it to use the equation of equal distances.

Let's square each side

Now we expand each binomial

Now we can substitute 1 for a 10 for b and 7 for y

Now we can simplify, and solve for 

So our answer is then

 

Example Question #1 : Derive Parabola Equation: Ccss.Math.Content.Hsg Gpe.A.2

Find the parabolic equation, where the focus and the directrix are as follows.

 

Possible Answers:

Correct answer:

Explanation:

The first step to solving this problem, it to use the equation of equal distances.

Let's square each side

Now we expand each binomial

Now we can substitute 1 for a 10 for b and 7 for y

Now we can simplify, and solve for 

So our answer is then

Example Question #1 : Derive Parabola Equation: Ccss.Math.Content.Hsg Gpe.A.2

Find the parabolic equation, where the focus and directrix are as follows.

 

Possible Answers:

Correct answer:

Explanation:

The first step to solving this problem, it to use the equation of equal distances.

Let's square each side

Now we expand each binomial

Now we can substitute 1 for a 10 for b and 7 for y

Now we can simplify, and solve for 

So our answer is then

 

Example Question #2 : Derive Parabola Equation: Ccss.Math.Content.Hsg Gpe.A.2

Find the parabolic equation, where the focus and directrix are as follows.



 

Possible Answers:

Correct answer:

Explanation:

The first step to solving this problem, it to use the equation of equal distances.

Let's square each side

Now we expand each binomial

Now we can substitute -10 for a 4 for b and -11 for y

Now we can simplify, and solve for 

So our answer is then

Example Question #5 : Derive Parabola Equation: Ccss.Math.Content.Hsg Gpe.A.2

Find the parabolic equation, where the focus and directrix are as follows.



 

Possible Answers:

Correct answer:

Explanation:

The first step to solving this problem, it to use the equation of equal distances.

Let's square each side

Now we expand each binomial

Now we can substitute 6 for a -9 for b and -5 for y

Now we can simplify, and solve for 

So our answer is then

 

Example Question #6 : Derive Parabola Equation: Ccss.Math.Content.Hsg Gpe.A.2

Find the parabolic equation, where the focus and directrix are as follows.



 

Possible Answers:

Correct answer:

Explanation:

The first step to solving this problem, it to use the equation of equal distances.

Let's square each side

Now we expand each binomial

Now we can substitute 1 for a -6 for b and -19 for y

Now we can simplify, and solve for 

So our answer is then

Example Question #294 : High School: Geometry

Find the parabolic equation, where the focus and directrix are as follows.

 

Possible Answers:

Correct answer:

Explanation:

The first step to solving this problem, it to use the equation of equal distances.

Let's square each side

Now we expand each binomial

Now we can substitute -10 for a 6 for b and 15 for y

Now we can simplify, and solve for 

So our answer is then

Example Question #295 : High School: Geometry

Find the parabolic equation, where the focus and directrix are as follows.

Possible Answers:

Correct answer:

Explanation:

The first step to solving this problem, it to use the equation of equal distances.

Let's square each side

Now we expand each binomial

Now we can substitute 7 for a 5 for b and -4 for y

Now we can simplify, and solve for 

So our answer is then

Example Question #9 : Derive Parabola Equation: Ccss.Math.Content.Hsg Gpe.A.2

Find the parabolic equation, where the focus and directrix are as follows.

Possible Answers:

Correct answer:

Explanation:

The first step to solving this problem, it to use the equation of equal distances.

Let's square each side

Now we expand each binomial

Now we can substitute 6 for a 8 for b and 10 for y

Now we can simplify, and solve for 

So our answer is then

 

 

Example Question #10 : Derive Parabola Equation: Ccss.Math.Content.Hsg Gpe.A.2

Find the parabolic equation, where the focus and directrix are as follows.

Possible Answers:

Correct answer:

Explanation:

The first step to solving this problem, it to use the equation of equal distances.

Let's square each side

Now we expand each binomial

Now we can substitute -10 for a -3 for b and -4 for y

Now we can simplify, and solve for 

So our answer is then

All Common Core: High School - Geometry Resources

6 Diagnostic Tests 114 Practice Tests Question of the Day Flashcards Learn by Concept
Learning Tools by Varsity Tutors