Common Core: High School - Number and Quantity : High School: Number and Quantity

Study concepts, example questions & explanations for Common Core: High School - Number and Quantity

varsity tutors app store varsity tutors android store

All Common Core: High School - Number and Quantity Resources

6 Diagnostic Tests 49 Practice Tests Question of the Day Flashcards Learn by Concept

Example Questions

Example Question #1 : High School: Number And Quantity

Evaluate: \displaystyle 64^{\frac{2}{3}}

Possible Answers:

\displaystyle 32

\displaystyle 4

\displaystyle 64

\displaystyle 16

Correct answer:

\displaystyle 16

Explanation:

To evaluate this, let's rewrite the problem.

\displaystyle 64^{\frac{2}{3}}=(\sqrt[3]{64})^2

Now lets break down the cube root.

\displaystyle (\sqrt[3]{64})^2=(\sqrt[3]{4\cdot4\cdot4})^2=(\sqrt[3]{4^3})^2=4^2=16

Example Question #2 : High School: Number And Quantity

Evaluate: \displaystyle 36^{\frac{1}{2}}

Possible Answers:

\displaystyle 6

\displaystyle 72

\displaystyle 12

\displaystyle 18

Correct answer:

\displaystyle 6

Explanation:

To evaluate this, let's rewrite the problem.

\displaystyle 36^{\frac{1}{2}}=\sqrt{36}

Now lets break down the square root.

\displaystyle \sqrt{36}=\sqrt{6\cdot6}=\sqrt{6^2}=6

Example Question #3 : The Real Number System

Evaluate: \displaystyle 9^{\frac{1}{2}}

Possible Answers:

\displaystyle 18

\displaystyle 4.5

\displaystyle 3

\displaystyle 6

Correct answer:

\displaystyle 3

Explanation:

To evaluate this, let's rewrite the problem.

\displaystyle 9^{\frac{1}{2}}=\sqrt{9}

Now lets break down the square root.

\displaystyle \sqrt{9}=\sqrt{3\cdot3}=\sqrt{3^2}=3

Example Question #3 : High School: Number And Quantity

Evaluate: \displaystyle 49^{\frac{2}{2}}

Possible Answers:

\displaystyle 49

\displaystyle 1

\displaystyle 28

\displaystyle 7

Correct answer:

\displaystyle 49

Explanation:

To solve this, let's reduce the exponent, and then solve.

\displaystyle 49^{\frac{2}{2}}=49^{\frac{1}{1}}=49^1=49

Example Question #5 : The Real Number System

Evaluate: \displaystyle 1^{\frac{1}{3}}

Possible Answers:

\displaystyle \frac{1}{3}

\displaystyle 1

\displaystyle 1.3333

\displaystyle 3

Correct answer:

\displaystyle 1

Explanation:

One to any power is just \displaystyle 1, so \displaystyle 1^{\frac{1}{3}}=1

Example Question #6 : The Real Number System

Evaluate: \displaystyle 64^{\frac{1}{3}}

Possible Answers:

\displaystyle \frac{64}{3}

\displaystyle \frac{16}{3}

\displaystyle 4

\displaystyle 3

\displaystyle 16

Correct answer:

\displaystyle 4

Explanation:

To evaluate this, let's rewrite the problem.

\displaystyle 64^{\frac{1}{3}}=\sqrt[3]{64}

Now lets break down the cube root.

\displaystyle \sqrt[3]{64}=\sqrt[3]{4\cdot4\cdot4}=\sqrt[3]{4^3}=4

Example Question #7 : The Real Number System

Evaluate: \displaystyle 100^{\frac{2}{2}}

Possible Answers:

\displaystyle 100

\displaystyle 1

\displaystyle 10

\displaystyle 1000

Correct answer:

\displaystyle 100

Explanation:

To solve this, let's reduce the exponent, and then solve.

\displaystyle 100^{\frac{2}{2}}=100^{\frac{1}{1}}=100^1=100

Example Question #8 : The Real Number System

Evaluate: \displaystyle 0^{\frac{1}{3}}

Possible Answers:

\displaystyle \text{Not defined}

\displaystyle \frac{1}{3}

\displaystyle 0

\displaystyle 1

Correct answer:

\displaystyle 0

Explanation:

Zero to any power is just \displaystyle 0, expect when the power is \displaystyle 0. So \displaystyle 0^{\frac{1}{3}}=0

Example Question #9 : The Real Number System

Evaluate: \displaystyle 0^{0}

Possible Answers:

\displaystyle \text{Undefined}

\displaystyle 0

\displaystyle 1

\displaystyle \text{Not possible}

Correct answer:

\displaystyle 1

Explanation:

Zero raised to the zero is equal to one, otherwise it is equal to zero. \displaystyle 0^{0}=1

Example Question #10 : The Real Number System

Evaluate: \displaystyle 144^{\frac{4}{2}}

Possible Answers:

\displaystyle 20736

\displaystyle 144

 \displaystyle 288

\displaystyle 72

Correct answer:

\displaystyle 20736

Explanation:

The first part to solving this problem is reducing the exponent, and then solving.

\displaystyle 144^{\frac{4}{2}}=144^{\frac{2}{1}}=144^2=20736

All Common Core: High School - Number and Quantity Resources

6 Diagnostic Tests 49 Practice Tests Question of the Day Flashcards Learn by Concept
Learning Tools by Varsity Tutors