Complex Analysis : Complex Functions

Study concepts, example questions & explanations for Complex Analysis

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Complex Functions

What does the sum below equal?

\displaystyle \sum_{n=1}^{m}(e^{2\pi i/m})^{n}

Another way of asking this question is what is the sum of the \displaystyle m roots of unity.

\displaystyle m\in \mathbb{N}

Possible Answers:

\displaystyle 1

\displaystyle \pi

\displaystyle e^\pi

\displaystyle 0

\displaystyle e

Correct answer:

\displaystyle 0

Explanation:

As messy as it looks, this is just a geometric series.

we will use the partial sum formula for the geometric series.

\displaystyle S_{n}=\frac{a_{1}(1-r^n)}{1-r}

 

\displaystyle a_{1}=e^{2\pi i/m}

 

\displaystyle r=e^{2\pi i/m}

 

\displaystyle S_{m}=\frac{a_{1}(1-r^m)}{1-r}=\frac{e^{2\pi i/m}(1-{\color{Red} (e^{2\pi i/m})^m})}{1-e^{2\pi i/m}}

 

the red part is the only part that matters....the \displaystyle m's cancel out leaving....

 

\displaystyle S_{m}=\frac{a_{1}(1-r^m)}{1-r}=\frac{e^{2\pi i/m}(1-{\color{Red} (e^{2\pi i})})}{1-e^{2\pi i/m}}

 

and...

 

\displaystyle e^{2\pi i}=1

 

thus we have...

 

\displaystyle S_{m}=\frac{a_{1}(1-r^m)}{1-r}=\frac{e^{2\pi i/m}(1-{\color{Red} (1)})}{1-e^{2\pi i/m}}

 

which gives the answer of zero.

 

\displaystyle S_{m}=0

Example Question #2 : Complex Functions

Consider the function \displaystyle f(z) = |z|^2

Find an expression for \displaystyle f'(z) (hint: use the definition of derivatve) and where it exists in the complex plane.

Possible Answers:

\displaystyle f'(z) = 0 \text{ where } z=0

\displaystyle f'(z) = 2|z| \text{ } \forall z

\displaystyle f'(z) = 2z \text{ } \forall z

\displaystyle f'(z) = 2z \text{ where } z=0

\displaystyle f'(z) = 2|z| \text{ where } z=0

Correct answer:

\displaystyle f'(z) = 0 \text{ where } z=0

Explanation:

Applying the definition of derivative, we have that

\displaystyle f'(z) = \lim_{\Delta z \to 0} \frac{f(z+\Delta z) - f(z)}{\Delta z} \\

\displaystyle f'(z) = \lim_{\Delta z \to 0}\frac{|z+\Delta z|^2 - |z|^2}{\Delta z} = \lim_{\Delta z \to 0} \frac{(z+\Delta z)(\bar{z}+\overline{\Delta z}) - z\overline{z}}{\Delta z} = \lim_{\Delta z \to 0} \overline{z} + \overline{\Delta z} + z \frac{\overline{\Delta z}}{\Delta z}

If the limits exists, it can be found by letting \displaystyle \Delta z approach \displaystyle 0 in any manner. 

In particular, if we it approach through the points \displaystyle (\Delta x , 0 ), we have that 

\displaystyle \overline{\Delta z} = \overline{\Delta x + i0} = \Delta x - i0 = \Delta x + i0 = \Delta z

A similar approach with \displaystyle (0, \Delta y) implies that \displaystyle \overline{\Delta z } = -\Delta z

Since limits are unique, these two approaches imply that 

\displaystyle \overline{z} + z = \overline{z} - z, which implies \displaystyle z=0 and \displaystyle f'(z) cannot exist when \displaystyle z \neq 0

Learning Tools by Varsity Tutors