Differential Equations : Transforms of Periodic Functions

Study concepts, example questions & explanations for Differential Equations

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Transforms Of Periodic Functions

Find the Laplace transform of the periodic function.

\(\displaystyle S(t)=\left\{\begin{matrix} 1,& 0\leq2\\ 0, & 2\leq4 \end{matrix}\right.\)

Possible Answers:

\(\displaystyle \frac{1}{s(1+e^{-2s})(1-e^{-s})}\)

\(\displaystyle \frac{1}{s(1+e^{-2s})(1+e^{-s})}\)

\(\displaystyle \frac{1}{s(1-e^{-2s})(1+e^{-s})}\)

\(\displaystyle \frac{1}{s(1+e^{-2s})(1+e^{s})}\)

\(\displaystyle \frac{1}{s(1+e^{2s})(1+e^{-s})}\)

Correct answer:

\(\displaystyle \frac{1}{s(1+e^{-2s})(1+e^{-s})}\)

Explanation:

This particular piecewise function is called a square wave. The period of this function is the length at which it takes the function to return to its starting point.

For this particular function

\(\displaystyle S(t)=\left\{\begin{matrix} 1,& 0\leq2\\ 0, & 2\leq4 \end{matrix}\right.\)

it has a period of

 \(\displaystyle T=4\).

and furthermore, 

\(\displaystyle f(t+4)=f(t)\)

Using the Transform of a Periodic Function Theorem which states,

\(\displaystyle \mathcal{L}\begin{Bmatrix} f(t) \end{Bmatrix}=\frac{1}{1-e^{-sT}}\int_0^T e^{-sT}f(t)dt\)

the problem can be solved as follows.

\(\displaystyle \mathcal{L}\begin{Bmatrix} S(t) \end{Bmatrix}=\frac{1}{1-e^{-4s}}\int_0^4 e^{-st}S(t)dt\)

\(\displaystyle \\=\frac{1}{1-e^{-4s}}\left[ \int_0^2 e^{-st}\cdot 1 dt+\int_2^4 e^{-st}\cdot 0dt \right] \\\\=\frac{1}{1-e^{-4s}}\frac{1-e^{-s}}{s}\\\\\leftarrow 1-e^{-4s}=(1+e^{-2s})(1-e^{-2s})\\\\\leftarrow (1-e^{-2s})=(1+e^{-s})(1-e^{-s}) \\\\=\frac{1-e^{-s}}{s(1+e^{-2s})(1-e^{-s})(1+e^{-s})} \\\\=\frac{1}{s(1+e^{-2s})(1+e^{-s})}\)

Learning Tools by Varsity Tutors