High School Math : How to find the surface area of a cone

Study concepts, example questions & explanations for High School Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : How To Find The Surface Area Of A Cone

What is the surface area of a cone with a radius of 4 and a height of 3?

Possible Answers:

40\pi\displaystyle 40\pi

25\pi\displaystyle 25\pi

16\pi\displaystyle 16\pi

48\pi\displaystyle 48\pi

36\pi\displaystyle 36\pi

Correct answer:

36\pi\displaystyle 36\pi

Explanation:

Here we simply need to remember the formula for the surface area of a cone and plug in our values for the radius and height.

\Pi r^{2} + \Pi r\sqrt{r^{2} + h^{2}}= \Pi\ast 4^{2} + \Pi \ast 4\sqrt{4^{2} + 3^{2}} = 16\Pi + 4\Pi \sqrt{25} = 16\Pi + 20\Pi = 36\Pi\displaystyle \Pi r^{2} + \Pi r\sqrt{r^{2} + h^{2}}= \Pi\ast 4^{2} + \Pi \ast 4\sqrt{4^{2} + 3^{2}} = 16\Pi + 4\Pi \sqrt{25} = 16\Pi + 20\Pi = 36\Pi

Example Question #2 : How To Find The Surface Area Of A Cone

The lateral area is twice as big as the base area of a cone.  If the height of the cone is 9, what is the entire surface area (base area plus lateral area)?

Possible Answers:

54π

27π

90π

81π

Correct answer:

81π

Explanation:

Lateral Area = LA = π(r)(l) where r = radius of the base and l = slant height

LA = 2B

π(r)(l) = 2π(r2)

rl = 2r2

l = 2r

Cone

From the diagram, we can see that r2 + h2 = l2.  Since h = 9 and l = 2r, some substitution yields

r2 + 92 = (2r)2 

r2 + 81 = 4r2 

81 = 3r2 

27 = r2

B = π(r2) = 27π

LA = 2B = 2(27π) = 54π

SA = B + LA = 81π

 

Example Question #1861 : High School Math

What is the surface area of a cone with a height of 8 and a base with a radius of 5?

 

Possible Answers:

\displaystyle 65\pi

\displaystyle 48.45\pi

\displaystyle 25\pi

\displaystyle 62.72\pi

Correct answer:

\displaystyle 62.72\pi

Explanation:

To find the surface area of a cone we must plug in the appropriate numbers into the equation

\displaystyle Surface\ Area=\pi r^{2}+\pi rl

where \displaystyle r is the radius of the base, and \displaystyle l is the lateral, or slant height of the cone.

First we must find the area of the circle.

To find the area of the circle we plug in our radius into the equation of a circle which is

This yields \displaystyle A=25\pi.

We then need to know the surface area of the cone shape.

To find this we must use our height and our radius to make a right triangle in order to find the lateral height using Pythagorean’s Theorem.

Pythagorean’s Theorem states

Take the radius and height and plug them into the equation as a and b to yield \displaystyle 5^{2}+8^{2}=c^{2}

First square the numbers \displaystyle 25+64=c^{2}

After squaring the numbers add them together \displaystyle 89=c^{2}

Once you have the sum, square root both sides \displaystyle \sqrt{89}=\sqrt{c^{2}}

After calculating we find our length is \displaystyle c=l=9.43

Then plug the length into the second portion of our surface area equation above to get \displaystyle (4)(\pi)(9.43)=37.72\pi

Then add the area of the circle with the conical area to find the surface area of the entire figure \displaystyle 25\pi+37.72\pi=62.72\pi

The answer is \displaystyle 62.72\pi.

Example Question #11 : Advanced Geometry

What is the surface area of a cone with a radius of 6 in and a height of 8 in?

Possible Answers:

36π in2

96π in2

66π in2

112π in2

60π in2

Correct answer:

96π in2

Explanation:

Find the slant height of the cone using the Pythagorean theorem:  r2 + h2 = s2 resulting in 62 + 82 = s2 leading to s2 = 100 or s = 10 in

SA = πrs + πr2 = π(6)(10) + π(6)2 = 60π + 36π = 96π in2

60π in2 is the area of the cone without the base.

36π in2 is the area of the base only.

Example Question #3 : How To Find The Surface Area Of A Cone

Find the surface area of a cone that has a radius of 12 and a slant height of 15.

Possible Answers:

\displaystyle 180\pi

\displaystyle 324\pi

\displaystyle 405\pi

\displaystyle 144\pi

\displaystyle 225\pi

Correct answer:

\displaystyle 324\pi

Explanation:

The standard equation to find the surface area of a cone is 

\displaystyle SA=\pi rs+\pi r^2

where \displaystyle s denotes the slant height of the cone, and \displaystyle r denotes the radius.

Plug in the given values for \displaystyle s and \displaystyle r to find the answer:

\displaystyle SA=\pi (12)(15)+\pi (12)^2=180\pi +144\pi =324\pi

Example Question #4 : How To Find The Surface Area Of A Cone

Find the surface area of the following cone.

Cone

Possible Answers:

\displaystyle 100 \pi m^2

\displaystyle 85 \pi m^2

\displaystyle 90 \pi m^2

\displaystyle 95 \pi m^2

\displaystyle 80 \pi m^2

Correct answer:

\displaystyle 90 \pi m^2

Explanation:

The formula for the surface area of a cone is:

\displaystyle SA = A_{base} + A_{lateral}

\displaystyle SA = \pi r^2 + \pi r l

where \displaystyle r is the radius of the cone and \displaystyle l is the slant height of the cone.

 

Plugging in our values, we get:

\displaystyle SA = \pi (5m)^2 + \pi (5m) (13m)

\displaystyle SA = 25 \pi m^2 + 65 \pi m^2 = 90 \pi m^2

Example Question #5 : How To Find The Surface Area Of A Cone

Find the surface area of the following cone.

Cone

Possible Answers:

\displaystyle 116 \pi m^2

\displaystyle 86 \pi m^2

\displaystyle 96 \pi m^2

\displaystyle 106 \pi m^2

\displaystyle 76 \pi m^2

Correct answer:

\displaystyle 96 \pi m^2

Explanation:

The formula for the surface area of a cone is:

\displaystyle SA = (base) + \frac{(circumference)(slant height)}{2}

\displaystyle SA = (\pi r^2) + \frac{(2 \pi r)(h_s)}{2}

\displaystyle SA = (\pi r^2) + ( \pi rh_s)

 

Use the Pythagorean Theorem to find the length of the radius:

\displaystyle A^2 + B^2 = C^2

\displaystyle A^2 + (8m)^2 = (10m)^2

\displaystyle A = 6m

 

Plugging in our values, we get:

\displaystyle SA = \pi (6m)^2 + \pi (6m)(10m)

\displaystyle SA = 96 \pi m^2

Example Question #1 : How To Find The Surface Area Of A Cone

Find the surface area of the following half cone.

Half_cone

Possible Answers:

\displaystyle 120 \pi m^2 + 120 m^2

\displaystyle 88 \pi m^2

\displaystyle 88 \pi m^2 + 88 m^2

\displaystyle 120 \pi m^2

\displaystyle 100 \pi m^2 + 120 m^2

Correct answer:

\displaystyle 100 \pi m^2 + 120 m^2

Explanation:

The formula for the surface area of the half cone is:

\displaystyle SA=(base)+\frac{1}{2}(circumference)(slant\ height)+(triangle)

\displaystyle SA=\left(\frac{\pi r^2}{2}\right)+\left(\frac{1}{2}\cdot \frac{2\pi r h_s}{2}\right)+rh

Where \displaystyle r is the radius, \displaystyle h_s is the slant height, and \displaystyle h is the height of the cone.

 

Use the Pythagorean Theorem to find the height of the cone:

\displaystyle A^2+B^2 = C^2

\displaystyle A^2+(8m)^2=(17m)^2

\displaystyle A=15m

 

Plugging in our values, we get:

\displaystyle SA=\left(\frac{\pi (8m)^2}{2}\right)+\left( \frac{\pi (8m) (17m)}{2}\right)+(8m)(15m)

\displaystyle SA=32 \pi m^2 + 68 \pi m^2 + 120m^2

\displaystyle SA = 100 \pi m^2 + 120 m^2

Learning Tools by Varsity Tutors