HSPT Math : Fractions

Study concepts, example questions & explanations for HSPT Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Fractions

Express the product in simplest form:

\displaystyle \frac{3}{5} \cdot 2 \frac{1}{7} \cdot 1 \frac{2}{5}

Possible Answers:

\displaystyle 1 \frac{11}{15}

\displaystyle 1 \frac{4}{5}

\displaystyle 1 \frac{6}{7}

\displaystyle 1 \frac{9}{10}

\displaystyle 2 \frac{1}{5}

Correct answer:

\displaystyle 1 \frac{4}{5}

Explanation:

Rewrite the mixed fractions as improper fractions, cross-cancel, and multiply across:

\displaystyle \frac{3}{5} \cdot 2 \frac{1}{7} \cdot 1 \frac{2}{5} = \frac{3}{5} \cdot \frac{15}{7} \cdot \frac{7}{5} = \frac{3}{1} \cdot \frac{3}{1} \cdot \frac{1}{5} = \frac{9}{5} = 1 \frac{4}{5}

Example Question #1 : How To Multiply Fractions

Evaluate:

\displaystyle -3.6 \cdot (-0.07)

Possible Answers:

\displaystyle 0.252

\displaystyle - 0.252

\displaystyle 0.0252

\displaystyle -0.0252

\displaystyle 2.52

Correct answer:

\displaystyle 0.252

Explanation:

The product of two negative numbers is the (positive) product of theie absolute values.

\displaystyle -3.6 \cdot (-0.07) = +(3.6 \cdot 0.07) = 3.6 \cdot 0.07

There are a total of three digits to the right of the two decimal points. Therefore, the product can be calculated by multiplying 36 by 7, then placing the decimal point so that there are three digits at right.

\displaystyle 36 \cdot 7 = 252 \Rightarrow 3.6 \cdot 0.07 = 0.252

This is the correct choice.

Example Question #2 : Fractions

Solve:

\displaystyle \frac{2}{5}\times\frac{7}{8}=

Possible Answers:

\displaystyle \frac{16}{35}

\displaystyle \frac{7}{20}

\displaystyle \frac{7}{4}

\displaystyle \frac{9}{13}

Correct answer:

\displaystyle \frac{7}{20}

Explanation:

\displaystyle \frac{2}{5}\times\frac{7}{8}=\frac{2\times7}{5\times8}=\frac{14}{40}=\frac{7}{20}

Example Question #2 : How To Multiply Fractions

Multiply:

\displaystyle 4.3 \times 3.7

Possible Answers:

\displaystyle 15.91

\displaystyle 14.911

\displaystyle 1.3201

\displaystyle 13.201

\displaystyle 1.591

Correct answer:

\displaystyle 15.91

Explanation:

First, multiply the numbers, ignoring the decimal points:

\displaystyle 43 \times 37 = 1591

Since the two factors in the original product have two digits to the right of the decimal points between them, position the decimal point in the product such that two digits are at its right. The result, therefore, is 

\displaystyle 15.91

Example Question #2 : Fractions

\displaystyle \frac{2}{5}*\frac{2}{5}=

Possible Answers:

\displaystyle \frac{2}{5}

\displaystyle 1

\displaystyle \frac{4}{25}

\displaystyle \frac{4}{10}

\displaystyle 0

Correct answer:

\displaystyle \frac{4}{25}

Explanation:

Multiply the numerators and then denominators:

\displaystyle \frac{2}{5}* \frac{2}{5}=\frac{4}{25}

Answer:

\displaystyle \frac{4}{25}

Example Question #1 : How To Multiply Fractions

\displaystyle \frac{4}{5}*\frac{2}{3}=

Possible Answers:

\displaystyle \frac{8}{15}

\displaystyle \frac{6}{8}

\displaystyle \frac{8}{8}

\displaystyle \frac{6}{15}

\displaystyle 1

Correct answer:

\displaystyle \frac{8}{15}

Explanation:

Multiply the numerators then denominators:

\displaystyle \frac{4}{5}* \frac{2}{3}=\frac{8}{15}

Answer: \displaystyle \frac{8}{15}

 

Example Question #1221 : Isee Middle Level (Grades 7 8) Mathematics Achievement

\displaystyle \frac{1}{6}* \frac{1}{6}=

Possible Answers:

\displaystyle \frac{1}{12}

\displaystyle \frac{1}{6}

\displaystyle \frac{1}{36}

\displaystyle \frac{2}{12}

Correct answer:

\displaystyle \frac{1}{36}

Explanation:

Multiply the numerators and the denominators:

\displaystyle \frac{1}{6}*\frac{1}{6}=\frac{1}{36}

Answer: \displaystyle \frac{1}{36}

Example Question #1222 : Isee Middle Level (Grades 7 8) Mathematics Achievement

What is the simplest form of the result:

\displaystyle \frac{1}{x^3}\times \frac{3x}{2x^2}\times \frac{4x^4}{3}

Possible Answers:

\displaystyle 2

\displaystyle \frac{2}{x}

\displaystyle 2x

\displaystyle 1

\displaystyle x

Correct answer:

\displaystyle 2

Explanation:

In order to multiply fractions, we can simply multiply straight across:

\displaystyle \frac{a}{b}\times \frac{c}{d}=\frac{ac}{bd}

 

So we can write:

 

\displaystyle \frac{1}{x^3}\times \frac{3x}{2x^2}\times \frac{4x^4}{3}=\frac{1\times 3x\times 4x^4}{x^3\times 2x^2\times 3}

 

\displaystyle \frac{12x^5}{6x^5}=\frac{12}{6}=2

Example Question #2 : Fractions

Simplify

\displaystyle \frac{3}{5}\times \frac{2}{6}\times \frac{3}{7}

Possible Answers:

\displaystyle \frac{3}{35}

\displaystyle \frac{6}{35}

\displaystyle \frac{24}{35}

\displaystyle \frac{1}{12}

\displaystyle \frac{4}{35}

Correct answer:

\displaystyle \frac{3}{35}

Explanation:

In order to multiply fractions, we can simply multiply straight across:

\displaystyle \frac{a}{b}\times \frac{c}{d}=\frac{ac}{bd}

 

So we can write:

 

\displaystyle \frac{3}{5}\times \frac{2}{6}\times \frac{3}{7}=\frac{3\times 2\times 3}{5\times 6\times 7}

\displaystyle =\frac{18}{210}

 

Divide it by the least common factor (i.e. 6) to simplify:

 

\displaystyle \frac{18}{210}=\frac{3}{35}

Example Question #2 : Fractions

\displaystyle \frac{1}{4}\times \frac{2}{6}-\frac{1}{8}=?

Possible Answers:

\displaystyle \frac{1}{24}

\displaystyle \frac{45}{24}

\displaystyle \frac{2}{17}

\displaystyle \frac{1}{4}

\displaystyle -\frac{1}{24}

Correct answer:

\displaystyle -\frac{1}{24}

Explanation:

In this problem we need to follow our order of operations; in this case we need to multiply before we subtract fractions. 

To multiply fractions we just need to multiply the numerator by the numerator and the denominator by the denominator. In this case \displaystyle 1\times 2 (the numerators of the fractions being multiplied) and \displaystyle 4\times 6 (the denominators) giving us   

\displaystyle \frac{2}{24}

We then rewrite our equation.

\displaystyle \frac{2}{24}-\frac{1}{8}=?

In order to subtract fractions, we must have a common denominator. To do this we need to find a common multiple of 24 and 8. In this case, the 8 nicely goes into 24 three times, so we will only need to multiply one of our fractions to have common denominators.

To do this we must multiply one-eighth three times like this...

\displaystyle \frac{3}{3}\left(-\frac{1}{8}\right)=-\frac{3}{24}

Remember that if you are multiplying a fraction, you must multiply both the numerator and the denominator in order to obtain a multiple of your original factor. 

Lastly subtract.

\displaystyle \frac{2}{24}-\frac{3}{24}=-\frac{1}{24}

Learning Tools by Varsity Tutors