All ISEE Upper Level Reading Resources
Example Questions
Example Question #1 : Identifying And Analyzing Supporting Ideas In Science Passages
Adapted from On the Origin of Species by Charles Darwin (1859)
How will the struggle for existence, discussed too briefly in the last chapter, act in regard to variation? Can the principle of selection, which we have seen is so potent in the hands of man, apply in nature? I think we shall see that it can act most effectually. Let it be borne in mind in what an endless number of strange peculiarities our domestic productions, and, in a lesser degree, those under nature, vary; and how strong the hereditary tendency is. Under domestication, it may be truly said that the whole organization becomes in some degree plastic. Let it be borne in mind how infinitely complex and close-fitting are the mutual relations of all organic beings to each other and to their physical conditions of life. Can it, then, be thought improbable, seeing that variations useful to man have undoubtedly occurred, that other variations useful in some way to each being in the great and complex battle of life, should sometimes occur in the course of thousands of generations? If such do occur, can we doubt (remembering that many more individuals are born than can possibly survive) that individuals having any advantage, however slight, over others, would have the best chance of surviving and of procreating their kind? On the other hand, we may feel sure that any variation in the least degree injurious would be rigidly destroyed. This preservation of favorable variations and the rejection of injurious variations, I call Natural Selection. Variations neither useful nor injurious would not be affected by natural selection, and would be left a fluctuating element, as perhaps we see in the species called polymorphic.
We shall best understand the probable course of natural selection by taking the case of a country undergoing some physical change, for instance, of climate. The proportional numbers of its inhabitants would almost immediately undergo a change, and some species might become extinct. We may conclude, from what we have seen of the intimate and complex manner in which the inhabitants of each country are bound together, that any change in the numerical proportions of some of the inhabitants, independently of the change of climate itself, would most seriously affect many of the others. If the country were open on its borders, new forms would certainly immigrate, and this also would seriously disturb the relations of some of the former inhabitants. Let it be remembered how powerful the influence of a single introduced tree or mammal has been shown to be. But in the case of an island, or of a country partly surrounded by barriers, into which new and better adapted forms could not freely enter, we should then have places in the economy of nature which would assuredly be better filled up, if some of the original inhabitants were in some manner modified; for, had the area been open to immigration, these same places would have been seized on by intruders. In such case, every slight modification, which in the course of ages chanced to arise, and which in any way favoured the individuals of any of the species, by better adapting them to their altered conditions, would tend to be preserved; and natural selection would thus have free scope for the work of improvement.
A supporting idea in this passage can best be described as __________.
certain species and breeds have historically survived while others haven't
it is difficult to be an animal
Darwin is tired of studying species and is confused
life is long and tiring and sometimes species give up
none of these answers
certain species and breeds have historically survived while others haven't
The passage suggests that, over time, certain species and breeds have survived and some have died out. This process has happened over time, Darwin suggests. He does not state that some species simply give up.
Example Question #131 : Natural Science Passages
Adapted from "Recent Views as to Direct Action of Light on the Colors of Flowers and Fruits" in Tropical Nature, and Other Essays by Alfred Russel Wallace (1878)
The theory that the brilliant colors of flowers and fruits is due to the direct action of light has been supported by a recent writer by examples taken from the arctic instead of from the tropical flora. In the arctic regions, vegetation is excessively rapid during the short summer, and this is held to be due to the continuous action of light throughout the long summer days. “The further we advance towards the north, the more the leaves of plants increase in size as if to absorb a greater proportion of the solar rays. M. Grisebach says that during a journey in Norway he observed that the majority of deciduous trees had already, at the 60th degree of latitude, larger leaves than in Germany, while M. Ch. Martins has made a similar observation as regards the leguminous plants cultivated in Lapland.” The same writer goes on to say that all the seeds of cultivated plants acquire a deeper color the further north they are grown, white haricots becoming brown or black, and white wheat becoming brown, while the green color of all vegetation becomes more intense. The flowers also are similarly changed: those which are white or yellow in central Europe becoming red or orange in Norway. This is what occurs in the Alpine flora, and the cause is said to be the same in both—the greater intensity of the sunlight. In the one the light is more persistent, in the other more intense because it traverses a less thickness of atmosphere.
Admitting the facts as above stated to be in themselves correct, they do not by any means establish the theory founded on them; and it is curious that Grisebach, who has been quoted by this writer for the fact of the increased size of the foliage, gives a totally different explanation of the more vivid colors of Arctic flowers. He says, “We see flowers become larger and more richly colored in proportion as, by the increasing length of winter, insects become rarer, and their cooperation in the act of fecundation is exposed to more uncertain chances.” (Vegetation du Globe, col. i. p. 61—French translation.) This is the theory here adopted to explain the colors of Alpine plants, and we believe there are many facts that will show it to be the preferable one. The statement that the white and yellow flowers of temperate Europe become red or golden in the Arctic regions must we think be incorrect. By roughly tabulating the colors of the plants given by Sir Joseph Hooker as permanently Arctic, we find among fifty species with more or less conspicuous flowers, twenty-five white, twelve yellow, eight purple or blue, three lilac, and two red or pink; showing a very similar proportion of white and yellow flowers to what obtains further south.
Data gathered from a survey of the colors of different types of Arctic flowers is presented __________.
at the beginning of the second paragraph
at the beginning of the first paragraph
at the end of the first paragraph
nowhere in the passage
at the end of the second paragraph
at the end of the second paragraph
This evidence is introduced at the end of the second paragraph, where the author says, "The statement that the white and yellow flowers of temperate Europe become red or golden in the Arctic regions must we think be incorrect. By roughly tabulating the colors of the plants given by Sir Joseph Hooker as permanently Arctic, we find among fifty species with more or less conspicuous flowers, twenty-five white, twelve yellow, eight purple or blue, three lilac, and two red or pink; showing a very similar proportion of white and yellow flowers to what obtains further south."
Example Question #1 : Analyzing Argumentative Claims, Bias, And Support In Natural Science Passages
Adapted from "Recent Views as to Direct Action of Light on the Colors of Flowers and Fruits" in Tropical Nature, and Other Essays by Alfred Russel Wallace (1878)
The theory that the brilliant colors of flowers and fruits is due to the direct action of light has been supported by a recent writer by examples taken from the arctic instead of from the tropical flora. In the arctic regions, vegetation is excessively rapid during the short summer, and this is held to be due to the continuous action of light throughout the long summer days. "The further we advance towards the north, the more the leaves of plants increase in size as if to absorb a greater proportion of the solar rays. M. Grisebach says that during a journey in Norway he observed that the majority of deciduous trees had already, at the 60th degree of latitude, larger leaves than in Germany, while M. Ch. Martins has made a similar observation as regards the leguminous plants cultivated in Lapland.” The same writer goes on to say that all the seeds of cultivated plants acquire a deeper color the further north they are grown, white haricots becoming brown or black, and white wheat becoming brown, while the green color of all vegetation becomes more intense. The flowers also are similarly changed: those which are white or yellow in central Europe becoming red or orange in Norway. This is what occurs in the Alpine flora, and the cause is said to be the same in both—the greater intensity of the sunlight. In the one the light is more persistent, in the other more intense because it traverses a less thickness of atmosphere.
Admitting the facts as above stated to be in themselves correct, they do not by any means establish the theory founded on them; and it is curious that Grisebach, who has been quoted by this writer for the fact of the increased size of the foliage, gives a totally different explanation of the more vivid colors of Arctic flowers. He says, “We see flowers become larger and more richly colored in proportion as, by the increasing length of winter, insects become rarer, and their cooperation in the act of fecundation is exposed to more uncertain chances.” (Vegetation du Globe, col. i. p. 61—French translation.) This is the theory here adopted to explain the colors of Alpine plants, and we believe there are many facts that will show it to be the preferable one. The statement that the white and yellow flowers of temperate Europe become red or golden in the Arctic regions must we think be incorrect. By roughly tabulating the colors of the plants given by Sir Joseph Hooker as permanently Arctic, we find among fifty species with more or less conspicuous flowers, twenty-five white, twelve yellow, eight purple or blue, three lilac, and two red or pink; showing a very similar proportion of white and yellow flowers to what obtains further south.
What role does the underlined sentence play in the passage as a whole?
It provides a counterargument opposing the theory of the "recent writer" quoted in the first paragraph.
It provides evidence that the phenomenon being discussed exists, but does not support one theory more than the other.
It offers an opinion as to the validity of the theory of the "recent writer" quoted in the first paragraph.
It provides evidence that supports the theory of the writer quoted in the first paragraph, but casts doubt on other theories.
It demonstrates that the "recent writer" quoted in the first paragraph is unreliable.
It provides evidence that the phenomenon being discussed exists, but does not support one theory more than the other.
The sentence underlined is "The further we advance towards the north, the more the leaves of plants increase in size as if to absorb a greater proportion of the solar rays." To answer this question correctly, you have to pay a great deal of attention to the way in which it is presented in the passage. It is quoted as evidence that the "recent writer" uses to support his or her theory that leaf size differs in this way due to a change in the intensity of the sunlight. So, neither"It provides a counterargument opposing the theory of the 'recent writer' quoted in the first paragraph" nor "It demonstrates that the 'recent writer' quoted in the first paragraph is unreliable" can be the correct answer. Since the statement in question is just presenting evidence, and not an opinion, "It offers an opinion as to the validity of the theory of the 'recent writer' quoted in the first paragraph" cannot be the correct answer either.
This leaves us with two possible answer choices: "It provides evidence that supports the theory of the writer quoted in the first paragraph, but casts doubt on other theories," and "It provides evidence that the phenomenon being discussed exists, but does not support one theory more than the other." The author of the passage, in the second paragraph, says that "the facts as above stated" are "in themselves correct, they do not by any means establish the theory founded on them." Given this, along with the fact that the underlined sentence's evidence never casts doubt on any theories in the passage, the correct answer is "It provides evidence that the phenomenon being discussed exists, but does not support one theory more than the other."
Example Question #4 : Drawing Conclusions In Science Passages
"The Multiple Sides of Computer Science" by Matthew Minerd (2014)
It often takes some time for a new discipline to become recognized as an independent science. An excellent example of this is computer science. In many ways, this science still is a hodgepodge of several different sciences, each one having its own distinct character. For example, some computer scientists are almost indistinguishable from mathematicians. Many of the most difficult topics in pattern recognition and data communications require intensive mathematics in order to provide software solutions. Years of training in the appropriate disciplines are necessary before the computer scientist can even begin to work as a programmer in such areas. In contrast to those computer scientists who work with complex mathematics, many computer scientists work on areas of hardware development that are similar to disciplines like electrical engineering and physics.
However, computer science has its own particular problems regarding the unity of its subject matter. There are many practical applications for computing work; therefore, many computer scientists focus on learning a large set of skills in programming languages, development environments, and even information technology. All of these disciplines have a certain practical coloration that is quite distinct from the theoretical concepts used in other parts of the field. Nevertheless, these practical topics add to the broad range of topics covered by most academic programs that claim to focus on “computer science.” It can only be hoped that these disciplines will increase in orderliness in the coming decades.
Which of the following topics would not be a good example to add to the second paragraph?
Studies of the social ramifications of programming
Courses in manufacturing and connecting internet cables
Studies in the types of physics involved in memory chip design
Topics related to building new computers from parts
Applications of computing to civic planning
Studies in the types of physics involved in memory chip design
The second paragraph focuses on the practical topics that often are taught in computer science programs. (These are contrasted to the more "theoretical" or "scientific" topics noted in the first paragraph.) The only really "scientific" topic listed here is the one about the physics involved in designing memory chips. Since this focuses on the physics, it is not so much about how to make these things as it is about the reasons why they work. This is more of a speculative matter than a practical or technical one.
Example Question #33 : Reading Comprehension
"Darwinism's Effect on Science" by Matthew Minerd (2014)
For much of the history of human thought, the sciences have studied subjects that seemed to be eternal and unchanging. Even the basic laws of the Nile’s flooding were investigated in the hopes of finding never-altering laws. Similarly, the scientific investigations of the ancient Near East and Greece into the regular laws of the stars ultimately looked for constant patterns. This overall pattern of scientific reasoning has left deep marks on the minds of almost all thinkers and found its apotheosis in modern physics. From the time of the early renaissance to the nineteenth century, physics represented the ultimate expression of scientific investigation for almost all thinkers. Its static laws appeared to be the unchanging principles of all motion and life on earth. By the nineteenth century, it had appeared that only a few details had to be “cleared up” before all science was basically known.
In many ways, this situation changed dramatically with the arrival of Darwinism. It would change even more dramatically in early twentieth-century physics as well. Darwin’s theories of evolution challenged many aspects of the “static” worldview. Even those who did not believe that a divine being created an unchanging world were shaken by the new vistas opened up to science by his studies. It had been a long-accepted inheritance of Western culture to believe that the species of living organisms were unchanging in nature. Though there might be many different kinds of creatures, the kinds themselves were not believed to change. The thesis of a universal morphing of types shattered this cosmology, replacing the old world-view with a totally new one. Among the things that had to change in light of Darwin’s work was the very view of science held by most people.
Which of the following provides an example of the main idea asserted in the first paragraph?
The fluctuation of coloration within a species is rather minimal.
The interest in science only arises once agriculture reaches a certain point of fixity.
The Pythagorean theorem is based upon the constant relationship of the sides of a right triangle to its hypotenuse.
Religion constantly wanes with the rise of science.
None of the other answers
The Pythagorean theorem is based upon the constant relationship of the sides of a right triangle to its hypotenuse.
The first paragraph discusses the role of necessary connections and unvarying rules in scientific thinking, particularly the type of thinking that has played a prominent role in Western thought for many centuries. The example of the Pythagorean theorem is a good example of this. Even if you do not know this mathematical equation, you can tell that this is the correct answer by the words "constant relationship."
Example Question #41 : Understanding The Content Of Natural Science Passages
Adapted from “Humming-Birds: As Illustrating the Luxuriance of Tropical Nature” in Tropical Nature, and Other Essays by Alfred Russel Wallace (1878)
The food of hummingbirds has been a matter of much controversy. All the early writers down to Buffon believed that they lived solely on the nectar of flowers, but since that time, every close observer of their habits maintains that they feed largely, and in some cases wholly, on insects. Azara observed them on the La Plata in winter taking insects out of the webs of spiders at a time and place where there were no flowers. Bullock, in Mexico, declares that he saw them catch small butterflies, and that he found many kinds of insects in their stomachs. Waterton made a similar statement. Hundreds and perhaps thousands of specimens have since been dissected by collecting naturalists, and in almost every instance their stomachs have been found full of insects, sometimes, but not generally, mixed with a proportion of honey. Many of them in fact may be seen catching gnats and other small insects just like fly-catchers, sitting on a dead twig over water, darting off for a time in the air, and then returning to the twig. Others come out just at dusk, and remain on the wing, now stationary, now darting about with the greatest rapidity, imitating in a limited space the evolutions of the goatsuckers, and evidently for the same end and purpose. Mr. Gosse also remarks, ” All the hummingbirds have more or less the habit, when in flight, of pausing in the air and throwing the body and tail into rapid and odd contortions. This is most observable in the Polytmus, from the effect that such motions have on the long feathers of the tail. That the object of these quick turns is the capture of insects, I am sure, having watched one thus engaged pretty close to me.”
What evidence does Mr. Gosse have to support the claim that hummingbirds eat insects?
He read in a reputable scientific journal that they eat insects.
He examined the contents of a hummingbird’s stomach and found many insects in it.
He observed one flailing around in the air and concluded that it was eating insects.
He surmised that they must eat insects because he has never seen one eating flower nectar.
A hummingbird got into his collection of live insects, and soon after, all of his insects were missing.
He observed one flailing around in the air and concluded that it was eating insects.
To answer this question, we have to consider the quotation attributed to Mr. Gosse found at the end of the passage:
“Mr. Gosse also remarks, ‘All the hummingbirds have more or less the habit, when in flight, of pausing in the air and throwing the body and tail into rapid and odd contortions. This is most observable in the Polytmus, from the effect that such motions have on the long feathers of the tail. That the object of these quick turns is the capture of insects, I am sure, having watched one thus engaged pretty close to me.’”
He doesn’t mention anything about having a collection of live insects, getting his information from a scientific journal, or dissecting a hummingbird’s stomach, so we can ignore those answer choices. He actively observes a hummingbird and surmises that they eat insects because of that, so the correct answer is “He observed one flailing around in the air and concluded that it was eating insects.”
Example Question #12 : Drawing Evidence From Natural Science Passages
Adapted from An Introduction to Astronomy by Forest Ray Moulton (1916 ed.)
It is doubtful if any important scientific idea ever sprang suddenly into the mind of a single man. The great intellectual movements in the world have had long periods of preparation, and often many men were groping for the same truth, without exactly seizing it, before it was fully comprehended.
The foundation on which all science rests is the principle that the universe is orderly, and that all phenomena succeed one another in harmony with invariable laws. Consequently, science was impossible until the truth of this principle was perceived, at least as applied to a limited part of nature.
The phenomena of ordinary observation, as, for example, the weather, depend on such a multitude of factors that it was not easy for men in their primitive state to discover that they occur in harmony with fixed laws. This was the age of superstition, when nature was supposed to be controlled by a great number of capricious gods whose favor could be won by childish ceremonies. Enormous experience was required to dispel such errors and to convince men that the universe is one vast organization whose changes take place in conformity with laws which they can in no way alter.
The actual dawn of science was in prehistoric times, probably in the civilizations that flourished in the valleys of the Nile and the Euphrates. In the very earliest records of these people that have come down to modern times it is found that they were acquainted with many astronomical phenomena and had coherent ideas with respect to the motions of the sun, moon, planets, and stars. It is perfectly clear from their writings that it was from their observations of the heavenly bodies that they first obtained the idea that the universe is not a chaos. Day and night were seen to succeed each other regularly, the moon was found to pass through its phases systematically, the seasons followed one another in order, and in fact the more conspicuous celestial phenomena were observed to occur in an orderly sequence. It is to the glory of astronomy that it first led men to the conclusion that law reigns in the universe.
According to this passage, why were astronomical bodies so important to the emergence of science?
Their beauty encouraged continuous speculation.
None of the other answers
They were once believed to be gods, but by showing that they were not such, humanity was able to believe in scientific thought.
Being above the earth's surface, they seem to encompass the whole of the world.
They exhibit a great deal of regularity.
They exhibit a great deal of regularity.
The key sentence for this question is, "It is perfectly clear from their writings that it was from their observations of the heavenly bodies that they first obtained the idea that the universe is not a chaos." The idea is that for prehistoric humanity, the stars and planets likely provided the first example of regularity in our day-to-day experience. Though many of our experiences seem random, the stars do indeed continue in their courses and the sun has its own repeating path. Hence, they began to see that the world had regular patterns—not all is chaos.
Example Question #13 : Drawing Evidence From Natural Science Passages
Adapted from “Darwin’s Predecessors” by J. Arthur Thomson in Evolution in Modern Thought (1917 ed.)
In seeking to discover Darwin's relation to his predecessors, it is useful to distinguish the various services which he rendered to the theory of organic evolution.
As everyone knows, the general idea of the doctrine of descent is that the plants and animals of the present day are the lineal descendants of ancestors on the whole somewhat simpler, that these again are descended from yet simpler forms, and so on backwards towards the literal "Protozoa" and "Protophyta" about which we unfortunately know nothing. Now no one supposes that Darwin originated this idea, which in rudiment at least is as old as Aristotle. What Darwin did was to make it current intellectual coin. He gave it a form that commended itself to the scientific and public intelligence of the day, and he won widespread conviction by showing with consummate skill that it was an effective formula to work with, a key which no lock refused. In a scholarly, critical, and preeminently fair-minded way, admitting difficulties and removing them, foreseeing objections and forestalling them, he showed that the doctrine of descent supplied a modal interpretation of how our present-day fauna and flora have come to be.
In the second place, Darwin applied the evolution-idea to particular problems, such as the descent of man, and showed what a powerful tool it is, introducing order into masses of uncorrelated facts, interpreting enigmas both of structure and function, both bodily and mental, and, best of all, stimulating and guiding further investigation. But here again it cannot be claimed that Darwin was original. The problem of the descent or ascent of man, and other particular cases of evolution, had attracted not a few naturalists before Darwin's day, though no one [except Herbert Spencer in the psychological domain (1855)] had come near him in precision and thoroughness of inquiry.
In the third place, Darwin contributed largely to a knowledge of the factors in the evolution-process, especially by his analysis of what occurs in the case of domestic animals and cultivated plants, and by his elaboration of the theory of natural selection, which Alfred Russel Wallace independently stated at the same time, and of which there had been a few previous suggestions of a more or less vague description. It was here that Darwin's originality was greatest, for he revealed to naturalists the many different forms—often very subtle—which natural selection takes, and with the insight of a disciplined scientific imagination he realized what a mighty engine of progress it has been and is.
Which of the following is a reason for how Darwin’s ideas provided a powerful tool?
They enabled scientists to see certain groups of data as single, intelligible wholes.
They gave the most details about how the human species differs from apes.
They helped to reorganize the sciences along historical lines.
None of the other answers
They provided the complete history of life on earth.
They enabled scientists to see certain groups of data as single, intelligible wholes.
The key phrase in the passage for this question is "introducing order into masses of uncorrelated facts." The idea is that Darwin's theories provide a tool by enabling this sort of process of data gathering. Uncorrelated facts are ones that have no order (no co-relation to each other). The idea here is that Darwin's insights helped to provide context to such data, helping to organize them. This made the insights into a powerful tool for science (because inquiry is difficult where there is no order at all).
Example Question #1 : Understanding Organization And Argument In Natural Science Passages
Adapted from “Introduced Species That Have Become Pests” in Our Vanishing Wild Life, Its Extermination and Protection by William Temple Hornaday (1913)
The man who successfully transplants or "introduces" into a new habitat any persistent species of living thing assumes a very grave responsibility. Every introduced species is doubtful gravel until panned out. The enormous losses that have been inflicted upon the world through the perpetuation of follies with wild vertebrates and insects would, if added together, be enough to purchase a principality. The most aggravating feature of these follies in transplantation is that never yet have they been made severely punishable. We are just as careless and easygoing on this point as we were about the government of the Yellowstone Park in the days when Howell and other poachers destroyed our first national bison herd, and when caught red-handed—as Howell was, skinning seven Park bison cows—could not be punished for it, because there was no penalty prescribed by any law. Today, there is a way in which any revengeful person could inflict enormous damage on the entire South, at no cost to himself, involve those states in enormous losses and the expenditure of vast sums of money, yet go absolutely unpunished!
The gypsy moth is a case in point. This winged calamity was imported at Maiden, Massachusetts, near Boston, by a French entomologist, Mr. Leopold Trouvelot, in 1868 or 69. History records the fact that the man of science did not purposely set free the pest. He was endeavoring with live specimens to find a moth that would produce a cocoon of commercial value to America, and a sudden gust of wind blew out of his study, through an open window, his living and breeding specimens of the gypsy moth. The moth itself is not bad to look at, but its larvae is a great, overgrown brute with an appetite like a hog. Immediately Mr. Trouvelot sought to recover his specimens, and when he failed to find them all, like a man of real honor, he notified the State authorities of the accident. Every effort was made to recover all the specimens, but enough escaped to produce progeny that soon became a scourge to the trees of Massachusetts. The method of the big, nasty-looking mottled-brown caterpillar was very simple. It devoured the entire foliage of every tree that grew in its sphere of influence.
The gypsy moth spread with alarming rapidity and persistence. In course of time, the state authorities of Massachusetts were forced to begin a relentless war upon it, by poisonous sprays and by fire. It was awful! Up to this date (1912) the New England states and the United States Government service have expended in fighting this pest about $7,680,000!
The spread of this pest has been retarded, but the gypsy moth never will be wholly stamped out. Today it exists in Rhode Island, Connecticut, and New Hampshire, and it is due to reach New York at an early date. It is steadily spreading in three directions from Boston, its original point of departure, and when it strikes the State of New York, we, too, will begin to pay dearly for the Trouvelot experiment.
Which of the following best describes an opinion held by the author?
We should introduce a new species of animal that eats gypsy moths to combat the problems they cause.
Efforts to contain the gypsy moth will improve as technology improves, until all of the moths in the United States have been eradicated.
Farmers should place nets around their fields and orchards to prevent the gypsy moths from getting to their crops.
It is difficult to say what the future holds for the fate of the gypsy moth in the United States.
Despite spending a great deal of money, the United States will never be rid of the gypsy moth.
Despite spending a great deal of money, the United States will never be rid of the gypsy moth.
The first sentence of the passage’s last paragraph provides the information we need to answer this question correctly: the author writes, “The spread of this pest has been retarded, but the gypsy moth never will be wholly stamped out.” We can thus definitively say that he thinks that “despite spending a great deal of money, the United States will never be rid of the gypsy moth.”
Example Question #2 : Authorial Purpose In Natural Science Passages
Adapted from “Birds in Retreat” in “Animal Defences—Active Defence” in Volume Four of The Natural History of Animals: The Animal Life of the World in Its Various Aspects and Relations by James Richard Ainsworth Davis (1903)
Among the large running birds are forms, like the African ostrich, in which the absence of powers of flight is largely compensated by the specialization of the legs for the purpose of rapid movement on the ground. For straightforward retreat in open country nothing could be more effective; but another kind of adaptation is required in birds like rails, which are deficient in powers of flight, and yet are able to run through thickly-growing vegetation with such rapidity as to commonly elude their enemies. This is rendered possible by the shape of their bodies, which are relatively narrow and flattened from side to side, so as to easily slip between the stems of grasses, rushes, and similar plants. Anyone who has pursued our native land-rail or corn-crake with intent to capture will have noted how extremely difficult it is even to get within sight of a bird of this sort.
Certain birds, unfortunately for themselves, have lost the power of flight without correspondingly increased powers of running, and have paid the penalty of extinction. Such an arrangement, as might be anticipated, was the result of evolution in islands devoid of any predatory ground-animals, and a classic example of it is afforded by the dodo and its allies, birds related to the pigeons. The dodo itself was a large and clumsy-looking species that at one time abounded in the island of Mauritius, which, like oceanic islands generally, possessed no native mammals, while its indigenous reptiles were only represented by lizards. The ubiquitous sailor, however, and the animals (especially swine) which he introduced, brought about the extinction of this helpless bird in less than a century after its first discovery in 1598. Its memory is now only kept green by a few contemporary drawings and descriptions, certain museum remains, and the proverb "as extinct as a dodo.” A similar fate must overtake any organism suddenly exposed to new and unfavorable conditions, if devoid of sufficient plasticity to rapidly accommodate itself to the altered environment.
The purpose of the underlined sentence is __________.
to explain how other types of running birds differ from the African ostrich
to make himself feel better about having never been able to catch a land-rail or corn-crake
to introduce a discussion of the land-rail and corn-crake
to provide an example likely familiar to readers of how effective a running bird’s defenses can be
to suggest that more people hunt land-rails and corn-crakes
to provide an example likely familiar to readers of how effective a running bird’s defenses can be
The underlined sentence appears at the end of the first paragraph and reads, “Anyone who has pursued our native land-rail or corn-crake with intent to capture will have noted how extremely difficult it is even to get within sight of a bird of this sort.”
This is the only sentence in the passage that mentions the land-rail and corn-crake, so “to introduce a discussion of the land-rail and corn-crake” cannot be the correct answer. The author doesn’t tell us that he himself has pursued a land-rail or corn-crake, and while one might infer this, he doesn’t say anything about having failed to catch one, so “to make himself feel better about having never been able to catch a land-rail or corn-crake” doesn’t seem to be the correct answer either. The answer choice “to suggest that more people hunt land-rails and corn-crakes “ cannot be correct, as the author isn’t urging the reader to do anything in this sentence; it is simply conveying information.
This leaves us with two answer choices: “to explain how other types of running birds differ from the African ostrich” and “to provide an example likely familiar to readers of how effective a running bird’s defenses can be.” While the first of these answer choices may seem correct at first glance, the author isn’t actually mentioning the land-rail and corn-crake to explain how other types of running birds differ from the African ostrich. He does this in a previous sentence. It is more accurate to say that the underlined sentence “provide[s] an example likely familiar to readers of how effective a running bird’s defenses can be.”