All LSAT Reading Resources
Example Questions
Example Question #2 : Science
Adapted from "Recent Views as to Direct Action of Light on the Colors of Flowers and Fruits" in Tropical Nature, and Other Essays by Alfred Russel Wallace (1878)
The theory that the brilliant colors of flowers and fruits is due to the direct action of light has been supported by a recent writer by examples taken from the arctic instead of from the tropical flora. In the arctic regions, vegetation is excessively rapid during the short summer, and this is held to be due to the continuous action of light throughout the long summer days. "The further we advance towards the north, the more the leaves of plants increase in size as if to absorb a greater proportion of the solar rays. M. Grisebach says that during a journey in Norway he observed that the majority of deciduous trees had already, at the 60th degree of latitude, larger leaves than in Germany, while M. Ch. Martins has made a similar observation as regards the leguminous plants cultivated in Lapland.” The same writer goes on to say that all the seeds of cultivated plants acquire a deeper color the further north they are grown, white haricots becoming brown or black, and white wheat becoming brown, while the green color of all vegetation becomes more intense. The flowers also are similarly changed: those which are white or yellow in central Europe becoming red or orange in Norway. This is what occurs in the Alpine flora, and the cause is said to be the same in both—the greater intensity of the sunlight. In the one the light is more persistent, in the other more intense because it traverses a less thickness of atmosphere.
Admitting the facts as above stated to be in themselves correct, they do not by any means establish the theory founded on them; and it is curious that Grisebach, who has been quoted by this writer for the fact of the increased size of the foliage, gives a totally different explanation of the more vivid colors of Arctic flowers. He says, “We see flowers become larger and more richly colored in proportion as, by the increasing length of winter, insects become rarer, and their cooperation in the act of fecundation is exposed to more uncertain chances.” (Vegetation du Globe, col. i. p. 61—French translation.) This is the theory here adopted to explain the colors of Alpine plants, and we believe there are many facts that will show it to be the preferable one. The statement that the white and yellow flowers of temperate Europe become red or golden in the Arctic regions must we think be incorrect. By roughly tabulating the colors of the plants given by Sir Joseph Hooker as permanently Arctic, we find among fifty species with more or less conspicuous flowers, twenty-five white, twelve yellow, eight purple or blue, three lilac, and two red or pink; showing a very similar proportion of white and yellow flowers to what obtains further south.
The “recent writer” quoted in the first paragraph believes that __________.
light is less persistent in the north than in the south
M. Ch. Martins’ theory is incorrect
the green color of plants becomes more intense in the south
because light continuously shines on arctic plants during the summer, they grow very quickly
cultivated flowers have lighter colors in the south and darker colors in the north
cultivated flowers have lighter colors in the south and darker colors in the north
Answering this question requires you to read the first paragraph very closely and to go back and figure out what exactly the "recent writer" is asserting, whether or not the author of the passage agrees with those assertions. Let's consider each of the answer choices one by one:
"M. Ch. Martins’ theory is incorrect" - This cannot be the correct answer, as the "recent writer" is quoted as mentioning M. Ch. Martins to bolster his own assertion about leaf size and latitude.
"light is less persistent in the north than in the south" - This cannot be the correct answer because the author, in referring to the "recent writer," says that "the same writer goes on to say that all the seeds of cultivated plants acquire a deeper color the further north they are grown . . . This is what occurs in the Alpine flora, and the cause is said to be the same in both—the greater intensity of the sunlight."
"the green color of plants becomes more intense in the south" - This answer choice cannot be correct because the author, in discussing the "recent writer," says, ""The same writer goes on to say that all the seeds of cultivated plants acquire a deeper color the further north they are grown, white haricots becoming brown or black, and white wheat becoming brown, while the green color of all vegetation becomes more intense."
"because light continuously shines on arctic plants during the summer, they grow very quickly" - The author states, "In the arctic regions, vegetation is excessively rapid during the short summer, and this is held to be due to the continuous action of light throughout the long summer days." Note that this isn't presented as a belief of the "recent writer," but instead as a statement of fact, so this answer choice couldn't be correct for that reason also.
"cultivated flowers have lighter colors in the south and darker colors in the north" - This is the correct answer! We can find evidence supporting it in that the author says (discussing the "recent writer") "The same writer goes on to say that all the seeds of cultivated plants acquire a deeper color the further north they are grown, white haricots becoming brown or black, and white wheat becoming brown, while the green color of all vegetation becomes more intense."
Example Question #4 : Science
Adapted from Darwinism by Alfred Russel Wallace (1889)
Everyone knows that in each litter of kittens or of puppies no two are alike. Even in the case in which several are exactly alike in colors, other differences are always perceptible to those who observe them closely. They will differ in size, in the proportions of their bodies and limbs, and in the length or texture of their hairy covering. They each possess, too, an individual countenance; we all know that each kitten in the successive families of our old favorite cat has a face of its own, distinct from all its brothers and sisters. Now this individual variability exists among all creatures that we can closely observe, even when the two parents are very much alike and have been matched in order to preserve some special breed. The same thing occurs in the vegetable kingdom. All plants raised from seed differ more or less from each other. In every bed of flowers or of vegetables we shall find, if we look closely, that there are countless small differences, in the size, in the mode of growth, in the shape or color of the leaves, in the form, color, or markings of the flowers, or in the size, form, color, or flavor of the fruit. These differences are usually small, but are yet easily seen, and in their extremes are very considerable; and some of these differences have this important quality, that they have a tendency to be reproduced, and thus by careful breeding certain particular variations or groups of variations can be increased to an enormous extent—apparently to any extent not incompatible with the life, growth, and reproduction of the plant or animal.
The way this is done is by artificial selection, and it is very important to understand this process and its results. Suppose we have a plant with a small edible seed, and we want to increase the size of that seed. Suppose also that the maximum size of a seed of this type of plant is solely dependent on the maximum sizes of the seeds of its parents. We grow as large a quantity of it as possible, and when the crop is ripe we carefully choose a few of the very largest seeds, or we may by means of a sieve sort out a quantity of the largest seeds. Next year we sow only these large seeds, taking care to give them suitable soil and manure, and the result is found to be that the average size of the seeds is larger than in the first crop, and that the largest seeds are now somewhat larger and more numerous. Again sowing these, we obtain a further slight increase of size, and in a very few years we obtain a greatly improved type that will always produce larger seeds than the unaltered type, even if cultivated without any special care. In this way all our fine sorts of cultivated vegetables, fruits, and flowers have been obtained, all our choice breeds of cattle or of poultry, our wonderful racehorses, and our endless varieties of dogs. It is a very common but mistaken idea that this improvement is due to crossing and feeding in the case of animals, and to improved cultivation in the case of plants. Crossing is occasionally used in order to obtain a combination of qualities found in two distinct breeds, and also because it is found to increase the constitutional vigor; but every breed is the result of the selection of variations occurring year after year and accumulated in the manner just described. Repeated selection in favor of certain traits is the foundation of all of the controlled changes made in our breeds of domestic animals and strains of cultivated plants.
The author's tone indicates that most people view artificial selection __________.
as a widely known fact
as a confusing topic
as a dangerous idea that should not be discussed
as something not worth understanding
as a legitimate threat to their belief systems
as a confusing topic
The author's desire to carefully point out precisely what artificial selection is and how it works makes it clear the ins and outs of the matter are not well-known; however, the author also engages the reader in a manner that makes it clear people are fairly interested in the subject despite their lack of knowledge.
Example Question #1 : Extrapolating From Science Passages
Adapted from On the Origin of Species by Charles Darwin (1859)
The many slight differences which appear in the offspring from the same parents, or which it may be presumed have thus arisen, from being observed in the individuals of the same species inhabiting the same confined locality, may be called individual differences. No one supposes that all the individuals of the same species are cast in the same actual mold. These individual differences are of the highest importance for us, for they are often inherited, as must be familiar to every one; and they thus afford materials for natural selection to act on and accumulate, in the same manner as man accumulates in any given direction individual differences in his domesticated productions. These individual differences generally affect what naturalists consider unimportant parts; but I could show, by a long catalogue of facts, that parts which must be called important, whether viewed under a physiological or classificatory point of view, sometimes vary in the individuals of the same species. I am convinced that the most experienced naturalist would be surprised at the number of the cases of variability, even in important parts of structure, which he could collect on good authority, as I have collected, during a course of years. It should be remembered that systematists are far from being pleased at finding variability in important characters, and that there are not many men who will laboriously examine internal and important organs, and compare them in many specimens of the same species. It would never have been expected that the branching of the main nerves close to the great central ganglion of an insect would have been variable in the same species; it might have been thought that changes of this nature could have been effected only by slow degrees; yet Sir J. Lubbock has shown a degree of variability in these main nerves in Coccus, which may almost be compared to the irregular branching of the stem of a tree. This philosophical naturalist, I may add, has also shown that the muscles in the larvæ of certain insects are far from uniform. Authors sometimes argue in a circle when they state that important organs never vary; for these same authors practically rank those parts as important (as some few naturalists have honestly confessed) which do not vary; and, under this point of view, no instance will ever be found of an important part varying; but under any other point of view many instances assuredly can be given.
From the passage, it can be inferred that many scientists believe that __________.
variation happens across all individuals in all species
important organs do not vary within species
Sir J. Lubbock is the most important scientist of his age
variations among individuals only occur in key animal features
individual differences do not exist among siblings in nature
important organs do not vary within species
There are two important elements in this passage that would aid an attempt to assess the beliefs of others: the author is making an argument against most scientists and the author only brings up the beliefs with which he disagrees. The only idea that the author insinuates almost every scientist believes is that variations never exist in organs which are "important," although this is an idea that the author mocks. The passing reference to "Sir J. Lubbock" references just one finding, and does not cover Lubbock's theories or conclusions stemming from those empirical findings, nor does it mention his status within the scientific community. Given the tone of most of the passage it is easiest to infer that most scientists disagree with the author and believe that major organs do not significantly vary within species.
Example Question #1 : Making Inferences In Science Passages
"Evolution" by William Floyd (2015)
The term “human evolution” brings to mind one long smooth transition, with the human race having gone neatly from Homo habilis to Homo erectus to Homo neanderthalis and on through to the present day Homo sapiens. Lining up all of the ancestors of modern humans in front of the outline of Homo sapiens can be a convenient teaching tool in elementary and middle school classrooms, but it greatly distorts the actual course of human evolution. One human species did not simply pick up the baton of the evolutionary relay from a dying ancestor, becoming the only true hominid walking the earth. Our evolutionary ancestors were actually competing with one another for their survival, coexisting warily throughout a relatively recent period of the earth’s history.
Neanderthal has become an insult to be hurled toward a crude or unsophisticated person, but the actual Neanderthals were relatively sophisticated. Homo neanderthalis was notably larger than Homo sapiens, hunted a wide variety of animals, and spread throughout harsher climates than their hominid relatives. In fact, in many parts of modern day Europe, the remarkable dominance of Homo neanderthalis in the archaeological record shows they were the main force in Europe for tens of thousands of years. More notably, for the 5,000 years that Neanderthals shared Europe with Homo sapiens, Neanderthals were the larger presence across the continent with more tools, homesites, and burials of Neanderthals existing from the short period. There is essentially no evidence that what we think of as the “modern human” was the most perfectly adapted hominid to the world of 40,000 years ago.
The Homo sapiens, of course, eventually won out, although scientists disagree about what made the Neanderthals become permanently etched in history rather than the present. For a long time, the popular opinion was that bloody conflict between humans and Neanderthals was in the end decisively won by humans, resulting in the permanent extinction of Neanderthals from the earth. However, recent studies of Neanderthal DNA extracted from very old remains have delivered some results which shatter a notion of modern humans having demolished any trace of Neanderthals. Actually, modern humans have a significant trace of Neanderthals living within them, as a large share of the human genome contains remarkable similarities to Neanderthal DNA. Quite likely, Homo sapiens did not take over from Homo neanderthalis as the chief hominid on the planet, but in fact coexisted to the point of absorbing Neanderthals into human society and DNA.
Which of the following statements can be assumed about the beliefs of previous generations of scientists?
Previous generations of scientists believed Homo neanderthalis was far inferior to Homo sapiens.
Previous generations of scientists believed that the ancestors of modern humans were essentially just like modern humans genetically.
Previous generations of scientists were most interested in performing scientific research on Neanderthal DNA.
Previous generations of scientists believed that human evolution was an extremely complicated process.
Previous generations of scientists did not care about why Homo neanderthalis went extinct.
Previous generations of scientists believed Homo neanderthalis was far inferior to Homo sapiens.
The author really only gives two clear indications about the beliefs of previous generations of scientists: in the first paragraph, the author notes that human evolution is often taught as a straight line process, and in the final sentences he shows how DNA studies are changing attitudes about Homo neanderthalis. This indicates that the previous generation saw Homo neanderthalis quite differently than the author, which would mean they saw it as far inferior to modern humans.
Example Question #6 : Making Inferences In Science Passages
"Darwin and Wallace" (2016)
Alfred Russel Wallace developed what he termed “the tendency of varieties to depart from the original type” while on an extended research trip in Borneo. During earlier research in the Amazon basin, Wallace had observed that certain, highly similar species were often separated by a small distance, but some type of significant geographical barrier. Although he was halfway around the world, Wallace was keeping in touch with fellow scientists in his native Britain, including Charles Darwin, who was most notable at that time for a large book on barnacles and his trip around the world on the HMS Beagle over a decade and a half earlier.
When Wallace sent Darwin a letter in February of 1858, Wallace’s intention was merely to ask if his findings in Malaysia were consistent with Darwin’s private theorizing about the development of species. Darwin received the letter in June, and was astonished at what he read from Wallace. He fired off a letter to Charles Lyell, head of the prestigious scientific organization the Linnean Society. Lyell had previously expressed concern that Darwin’s long gestating theory of natural selection would be preempted by another researcher, expressing a strong likelihood it would be Wallace.
The custom among scientists at the time called for the first person to publish a theory to be given credit for it. Wallace was well on his way to publishing his own work, largely in the form of the letter he had sent Darwin. Lyell, who had been hearing about Darwin’s theory for fifteen years, believed that both men should receive some credit. With his position of authority at the Linnean Society, Lyell arranged to have a joint paper read at the last meeting before their summer break in 1858, which took place on the first of July. The meeting was relatively well attended for the time, with over thirty people in the audience, including two foreigners. The vast majority of them were there to hear a eulogy for Robert Brown, the Scottish botanist and former president of the Society, who had passed away in early June.
Neither Alfred Russell Wallace nor Charles Darwin were present at the meeting. Wallace was still in Southeast Asia, totally unaware that the joint paper was being presented, only being informed by a letter after the meeting. Darwin was in his native Kent, far away from London, burying his recently deceased baby son, Charles Waring Darwin, who had succumbed to scarlet fever just three days previously. Darwin gave Lyell and fellow scientist Robert Hooker Wallace’s letter, a letter he had written to the American researcher Asa Gray, and an essay he had written in 1844. He then told Lyell and Hooker that he was unable to attend.
Little was made of the joint reading. Only a few small reviews were made, none of which either greatly lauded or fiercely criticized the theory of natural selection. After this, Darwin left his home with his family, seeking to get away from the disease that killed his youngest child, and began a large book on the theory. Wallace kept traveling across the Malay Archipelago, finding new evidence for the theory everywhere he went.
Charles Darwin’s name would become indelibly linked with natural selection; in particular, its subsequent overarching idea of the evolution of human beings due to the big book he was writing, On the Origin of Species. Its publication in 1859 would revolutionize how scientists thought about natural history, biology, and even science’s relation to religion. Darwin would often retreat from public scrutiny and engagement. In his stead, it was often Alfred Russell Wallace, who had returned to England in 1862, defending what became known as “Darwin’s theory.” Wallace’s significant contribution to natural selection was recognized by scientists, but rarely by the public. Nonetheless, from prompting the initial publication of the idea to staunchly fighting for it, Alfred Russell Wallace was key to the development of evolution.
Based on the information provided in the passage, the reaction to the joint presentation at the Linnean society is best summarized as:
Enthusiastic
Negative
Lukewarm
Overheated
Lukewarm
The passage notes that there was immense reaction to Darwin's book published in 1859, both positively and negatively. Regarding the presentation at the Linnean Society, however, the passage notes that "Little was made of the joint reading." This indicates that the best description of the reaction to the presentation was "lukewarm."