Precalculus : Find the Area Using Limits

Study concepts, example questions & explanations for Precalculus

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Area Under A Curve

What is the area under the curve of the function

\displaystyle \small f(x)=3(x-1)^2+1

from \displaystyle \small x=0 to \displaystyle \small x=2.

Possible Answers:

\displaystyle \small 3

\displaystyle \small 3.5

\displaystyle \small 2

\displaystyle \small 4

\displaystyle 6

Correct answer:

\displaystyle \small 4

Explanation:

The area under the curve of the function \displaystyle \small f(x) is the definite integral from \displaystyle \small x=0 to \displaystyle \small x=2.

Remember when integrating, we will increase the exponent by one and then divide the whole term by the value of the new exponent.

\displaystyle \small \int_0^2 f(x)dx=\int_0^2 [3(x-1)^2+1]dx =(x-1)^3+x]_0^2

From here, we find the difference between the function values of the boundaries.

\displaystyle \small \small \small =[(2-1)^3+2]-[(0-1)^3+0]=1^3+2-(-1)^3

\displaystyle \small =1+2+1=4

Learning Tools by Varsity Tutors