SSAT Middle Level Math : Squares / Square Roots

Study concepts, example questions & explanations for SSAT Middle Level Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Squares / Square Roots

Evaluate: \displaystyle \sqrt{100} + \sqrt{49 } - \sqrt{36}

Possible Answers:

\displaystyle 15

\displaystyle 11

\displaystyle 23

\displaystyle 18

\displaystyle 13

Correct answer:

\displaystyle 11

Explanation:

Find the individual square roots and perform the operations on them.

\displaystyle \sqrt{100} = 10

\displaystyle \sqrt{49 } = 7

\displaystyle \sqrt{36} = 6

\displaystyle \sqrt{100} + \sqrt{49 } - \sqrt{36} = 10 + 7 - 6 = 17-6 = 11

Example Question #1 : How To Find The Square Root

The square root of a number is 43. What is that number?

Possible Answers:

\displaystyle 1,789

\displaystyle 1,869

\displaystyle 1,729

\displaystyle 1,809

\displaystyle 1,849

Correct answer:

\displaystyle 1,849

Explanation:

By definition, the square root of a number multiplied by itself yields that number. Therefore, 43 is the square root of \displaystyle 43 \cdot 43 = 1,849.

Example Question #3 : How To Find The Square Root

The square root of a number is 58. What is that number?

Possible Answers:

\displaystyle 3,024

\displaystyle 3,364

\displaystyle 3,424

\displaystyle 3,264

\displaystyle 3,524

Correct answer:

\displaystyle 3,364

Explanation:

By definition, the square root of a number multiplied by itself yields that number. Therefore, 

\displaystyle 58 \cdot 58 = 3,364.

Example Question #2 : Squares / Square Roots

\displaystyle \frac{\sqrt{64}-\sqrt{36}}{\sqrt{4}}=

Possible Answers:

\displaystyle 1

\displaystyle 4

\displaystyle 3

\displaystyle 2

Correct answer:

\displaystyle 1

Explanation:

First, find the square root of each number:

\displaystyle \sqrt{64}=8

\displaystyle \sqrt{36}=6

\displaystyle \sqrt{4}=2

Then, solve the equation accordingly.

\displaystyle \frac{8-2}{2}=

\displaystyle \frac{2}{2}=1

The answer is \displaystyle 1.

Example Question #2 : How To Find The Square Root

Evaluate: \displaystyle \sqrt{121}

Possible Answers:

\displaystyle 13

\displaystyle 7

\displaystyle 9

\displaystyle 11

\displaystyle 17

Correct answer:

\displaystyle 11

Explanation:

The square root of a number is the number which, when multiplied by itself, yields that number. Since \displaystyle 11 \cdot 11 = 121\displaystyle \sqrt{121} = 11.

Example Question #6 : How To Find The Square Root

Which of the following statements is true about \displaystyle \sqrt{441}?

Possible Answers:

\displaystyle 19 < \sqrt{441} < 20

\displaystyle \sqrt{441} = 21

\displaystyle \sqrt{441} = 19

\displaystyle 20 < \sqrt{441} < 21

\displaystyle 21 < \sqrt{441} < 22

Correct answer:

\displaystyle \sqrt{441} = 21

Explanation:

The square root of a number is the number which, when multiplied by itself, yields that number. Since \displaystyle 21 \cdot 21 = 441\displaystyle \sqrt{441} = 21.

Example Question #2 : How To Find The Square Root

Which of the following statements is true about \displaystyle \sqrt{ 231}?

Possible Answers:

\displaystyle 15 < \sqrt{ 231} < 16

\displaystyle \sqrt{ 231} = 17

\displaystyle 16 < \sqrt{ 231} < 17

\displaystyle 17 < \sqrt{ 231} < 18

\displaystyle \sqrt{ 231} = 19

Correct answer:

\displaystyle 15 < \sqrt{ 231} < 16

Explanation:

The square root of a number is the number which, when multiplied by itself, yields that number.  Since \displaystyle 15 \cdot 15 = 225,  \displaystyle 16 \cdot 16 = 256, and

 \displaystyle 15^{2} = 225 < 231 < 256 = 16^{2}

then 

\displaystyle 15 = \sqrt{225 }< 231 < \sqrt{ 256} = 16

Example Question #3 : How To Find The Square Root

Evaluate:

\displaystyle \sqrt{169}

Possible Answers:

\displaystyle 7

\displaystyle 17

\displaystyle 9

\displaystyle 13

\displaystyle 11

Correct answer:

\displaystyle 13

Explanation:

The square root of a number is the number which, when multiplied by itself, yields that number. Since \displaystyle 13 \cdot 13 = 169\displaystyle \sqrt{169} = 13.

Example Question #9 : How To Find The Square Root

Which of the following statements is true about \displaystyle \sqrt{-225} ?

Possible Answers:

\displaystyle -15 < \sqrt{-225} < -14

\displaystyle \sqrt{-225} is undefined in the set of real numbers.

\displaystyle -17 < \sqrt{-225} < -16

\displaystyle -16 < \sqrt{-225} < -15

\displaystyle \sqrt{-225} = -15

Correct answer:

\displaystyle \sqrt{-225} is undefined in the set of real numbers.

Explanation:

A negative number does not have a real square root, so this is the correct choice.

Example Question #10 : How To Find The Square Root

A square has an area of \displaystyle 16\ ft^{2}.  

How long is each of its sides?

Possible Answers:

\displaystyle 9

\displaystyle 3

\displaystyle 12

\displaystyle 4

\displaystyle 8

Correct answer:

\displaystyle 4

Explanation:

The two sides of the square must be the same length, and multiply to give 16.  So we are looking for the \displaystyle \sqrt{16} which is \displaystyle 4.

Learning Tools by Varsity Tutors