Trigonometry : De Moivre's Theorem and Finding Roots of Complex Numbers

Study concepts, example questions & explanations for Trigonometry

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : De Moivre's Theorem And Finding Roots Of Complex Numbers

Simplify using De Moivre's Theorem:

\displaystyle \small (\cos x+i\sin x)^3

Possible Answers:

\displaystyle \small \small \cos 3x+i\sin x

\displaystyle \small \small 3\cos x+3i\sin x

\displaystyle \small \small \sin 3x+i\cos 3x

\displaystyle \small \small \cos 3x+i\sin3x

Correct answer:

\displaystyle \small \small \cos 3x+i\sin3x

Explanation:

We can use DeMoivre's formula which states:

\displaystyle z^n=r^n(\cos n\theta + i \sin n \theta)

Now plugging in our values of \displaystyle \small n=3 and \displaystyle r=1 we get the desired result.

\displaystyle \small (\cos x+i\sin x)^n=(\cos nx+i\sin nx)

\displaystyle \cos 3x +i \sin 3x

Example Question #1 : De Moivre's Theorem And Finding Roots Of Complex Numbers

Evaluate using De Moivre's Theorem: \displaystyle (1-i)^8

Possible Answers:

\displaystyle 128

\displaystyle 256

\displaystyle -128

\displaystyle 16

\displaystyle 16i

Correct answer:

\displaystyle 16

Explanation:

First, convert this complex number to polar form.

\displaystyle r= \sqrt{ a^2 + b^2 } = \sqrt{1^2 +(-1)^2 }=\sqrt{2}

\displaystyle \sin \theta = \frac{-1}{\sqrt2} 

\displaystyle \theta = \frac{5 \pi }{4} \enspace or \enspace \frac{7 \pi }{4}

Since the point has a positive real part and a negative imaginary part, it is located in quadrant IV, so the angle is \displaystyle \frac{7\pi}{4}.

This gives us \displaystyle (\sqrt{2} ( \cos \frac{7 \pi }{4} + i \sin \frac{ 7 \pi }{4} )) ^ 8

To evaluate, use DeMoivre's Theorem:

DeMoivre's Theorem is

\displaystyle (\cos(x)+i\sin(x))^n=\cos(nx)+i\sin(nx) 

We apply it to our situation to get:

\displaystyle (\sqrt2 )^8 ( \cos \frac{ 7 \pi }{4} \cdot 8 + i \sin \frac{ 7 \pi }{4} \cdot 8 ) simplifying

\displaystyle 2 ^ 4 ( \cos 14 \pi + i \sin 14 \pi ),  \displaystyle 14 \pi is coterminal with \displaystyle 0 since it is an even multiple of \displaystyle \pi

\displaystyle 2^ 4 (\cos 0 + i \sin 0 ) = 16(1 + 0i) = 16

Example Question #2 : De Moivre's Theorem And Finding Roots Of Complex Numbers

Use De Moivre's Theorem to evaluate \displaystyle (3 \sqrt3 -3i) ^ 6.

Possible Answers:

\displaystyle 23,328 - 23,328 i

\displaystyle 23,328 + 23,328 i

\displaystyle 15,625

\displaystyle 46,656

\displaystyle -46,656

Correct answer:

\displaystyle -46,656

Explanation:

First convert this point to polar form:

\displaystyle r = \sqrt{(3\sqrt3)^2 + (-3)^2 } = \sqrt{9 \cdot 3 + 9 } = \sqrt{36} = 6

\displaystyle \cos \theta = \frac{ 3\sqrt3}{6 } = \frac{\sqrt3}{2}

\displaystyle \theta = \cos ^{-1} (\frac{\sqrt3}{2} ) = \frac{ \pi }{6} \enspace \or \enspace \frac{ 11 \pi }{6}

Since this number has a negative imaginary part and a positive real part, it is in quadrant IV, so the angle is \displaystyle \frac{ 11 \pi }{6}

We are evaluating \displaystyle (6 \cos \frac{11 \pi }{6} + i \sin \frac{ 11 \pi }{6} ) ^ 6

Using DeMoivre's Theorem:

DeMoivre's Theorem is

 

\displaystyle (\cos(x)+i\sin(x))^n=\cos(nx)+i\sin(nx)

 

We apply it to our situation to get:

\displaystyle 6^6 (\cos \frac{ 11 \pi }{6} \cdot 6 + i \sin \frac{ 11 \pi }{6} \cdot 6)

\displaystyle \frac{11 \pi }{6} \cdot 6 = 11 \pi which is coterminal with \displaystyle \pi since it is an odd multiplie

\displaystyle 46,656(\cos \pi + i \sin \pi ) = 46,656 (-1 + 0i) = -46,656

Example Question #3 : De Moivre's Theorem And Finding Roots Of Complex Numbers

Use De Moivre's Theorem to evaluate \displaystyle (2 + 2i )^9.

Possible Answers:

\displaystyle -512

\displaystyle 8,192 + 8,192 i

\displaystyle 512

\displaystyle 11,585.238 i

\displaystyle 11,585.238

Correct answer:

\displaystyle 8,192 + 8,192 i

Explanation:

First, convert the complex number to polar form:

\displaystyle r = \sqrt{ 2^2 + 2^2 } = \sqrt{4 + 4 } = \sqrt{2 \cdot 4 } = 2 \sqrt 2

\displaystyle \sin \theta = \frac{ 2 }{ 2 \sqrt 2 } = \frac{ 1 }{ \sqrt2 }

\displaystyle \theta = \sin ^{-1 } (\frac{ 1}{ \sqrt 2 }) = \frac{ \pi }{4} \enspace or \enspace \frac{ 3 \pi }{4}

Since both the real and the imaginary parts are positive, the angle is in quadrant I, so it is \displaystyle \frac{ \pi }{4}

This means we're evaluating

\displaystyle (2 \sqrt2 (\cos \frac{ \pi }{4} + i \sin \frac{ \pi }{4} ))^ 9

Using DeMoivre's Theorem:

DeMoivre's Theorem is

\displaystyle (\cos(x)+i\sin(x))^n=\cos(nx)+i\sin(nx) 

We apply it to our situation to get.

\displaystyle (2 \sqrt2 )^9 (\cos \frac{\pi }{4} \cdot 9 + i \sin \frac{ \pi }{4} \cdot 9 )

First, evaluate \displaystyle (2\sqrt2)^9. We can split this into \displaystyle 2^9 \cdot (\sqrt2)^9 which is equivalent to \displaystyle 2^9 \cdot (\sqrt2)^8 \cdot \sqrt2 = 2^9 \cdot 2^4 \cdot \sqrt 2

[We can re-write the middle exponent since \displaystyle \sqrt 2 is equivalent to \displaystyle 2^{\frac{1}{2}}]

This comes to \displaystyle 8,192 \sqrt 2

Evaluating sine and cosine at \displaystyle \frac{\pi }{4} \cdot 9 = \frac{ 9 \pi }{4} is equivalent to evaluating them at \displaystyle \frac{ \pi }{4} since \displaystyle \frac{ 9 \pi }{4} - 2 \pi = \frac{9 \pi }{4 } - \frac{ 8 \pi }{4} = \frac{ \pi }{4}

This means our expression can be written as: 

\displaystyle 8,192 \sqrt2 ( \cos \frac{\pi }{4} + i \sin \frac{ \pi }{4} ) = 8,192 \sqrt2 (\frac{1}{\sqrt2} + i \frac{ 1}{\sqrt2}) = 8,192 + 8,192i

Example Question #4 : De Moivre's Theorem And Finding Roots Of Complex Numbers

Find all fifth roots of \displaystyle 3+4i.

Possible Answers:

\displaystyle \\k=0: \sqrt{5}\left (\cos53.13^\circ+i\sin53.13^\circ \right )=R_1\\ k=1: \sqrt{5}\left (\cos125.13^\circ+i\sin125.13^\circ \right )=R_2\\ k=2: \sqrt{5}\left (\cos197.13^\circ+i\sin197.13^\circ \right )=R_3\\ k=3: \sqrt{5}\left (\cos269.13^\circ+i\sin269.13^\circ \right )=R_4\\ k=4: \sqrt{5}\left (\cos341.13^\circ+i\sin341.13^\circ \right )=R_5

\displaystyle \\k=0: \sqrt[5]{5}\left (\cos10.63^\circ+i\sin10.63^\circ \right )=R_1\\ k=1: \sqrt[5]{5}\left (\cos82.63^\circ+i\sin82.63^\circ \right )=R_2\\ k=2: \sqrt[5]{5}\left (\cos154.63^\circ+i\sin154.63^\circ \right )=R_3\\ k=3: \sqrt[5]{5}\left (\cos226.63^\circ+i\sin226.63^\circ \right )=R_4\\ k=4: \sqrt[5]{5}\left (\cos298.63^\circ+i\sin298.63^\circ \right )=R_5

\displaystyle \\k=0: \sqrt{5}\left (\cos10.63^\circ+i\sin10.63^\circ \right )=R_1\\ k=1: \sqrt{5}\left (\cos82.63^\circ+i\sin82.63^\circ \right )=R_2\\ k=2: \sqrt{5}\left (\cos154.63^\circ+i\sin154.63^\circ \right )=R_3\\ k=3: \sqrt{5}\left (\cos226.63^\circ+i\sin226.63^\circ \right )=R_4\\ k=4: \sqrt{5}\left (\cos298.63^\circ+i\sin298.63^\circ \right )=R_5

\displaystyle \\k=0: \sqrt[5]{5}\left (\cos53.13^\circ+i\sin53.13^\circ \right )=R_1\\ k=1: \sqrt[5]{5}\left (\cos125.13^\circ+i\sin125.13^\circ \right )=R_2\\ k=2: \sqrt[5]{5}\left (\cos197.13^\circ+i\sin197.13^\circ \right )=R_3\\ k=3: \sqrt[5]{5}\left (\cos269.13^\circ+i\sin269.13^\circ \right )=R_4\\ k=4: \sqrt[5]{5}\left (\cos341.13^\circ+i\sin341.13^\circ \right )=R_5

Correct answer:

\displaystyle \\k=0: \sqrt[5]{5}\left (\cos10.63^\circ+i\sin10.63^\circ \right )=R_1\\ k=1: \sqrt[5]{5}\left (\cos82.63^\circ+i\sin82.63^\circ \right )=R_2\\ k=2: \sqrt[5]{5}\left (\cos154.63^\circ+i\sin154.63^\circ \right )=R_3\\ k=3: \sqrt[5]{5}\left (\cos226.63^\circ+i\sin226.63^\circ \right )=R_4\\ k=4: \sqrt[5]{5}\left (\cos298.63^\circ+i\sin298.63^\circ \right )=R_5

Explanation:

Begin by converting the complex number to polar form:

\displaystyle 3+4i=5(\cos53.13^\circ+i\sin53.13^\circ)

Next, put this in its generalized form, using k which is any integer, including zero:

\displaystyle 5[\cos(53.13^\circ+k360^\circ)+i\sin(53.13^\circ+k360^\circ)]

Using De Moivre's theorem, a fifth root of \displaystyle 3+4i is given by:

\displaystyle \left [5[\cos(53.13^\circ+k360^\circ)+i\sin(53.13^\circ+k360^\circ)] \right ]^\frac{1}{5}

\displaystyle =5^\frac{1}{5}\left (\cos\frac{53.13^\circ+k360^\circ}{5}+i\sin\frac{53.13^\circ+k360^\circ}{5} \right )

\displaystyle =\sqrt[5]{5}\left [\cos(10.63^\circ+k72^\circ)+i\sin(10.63^\circ+k72^\circ) \right ]

Assigning the values \displaystyle k=0,1,2,3,4 will allow us to find the following roots. In general, use the values \displaystyle k=0, 1, 2, ... , n-1.

\displaystyle k=0: \sqrt[5]{5}\left (\cos10.63^\circ+i\sin10.63^\circ \right )=R_1

\displaystyle k=1: \sqrt[5]{5}\left (\cos82.63^\circ+i\sin82.63^\circ \right )=R_2

\displaystyle k=2: \sqrt[5]{5}\left (\cos154.63^\circ+i\sin154.63^\circ \right )=R_3

\displaystyle k=3: \sqrt[5]{5}\left (\cos226.63^\circ+i\sin226.63^\circ \right )=R_4

\displaystyle k=4: \sqrt[5]{5}\left (\cos298.63^\circ+i\sin298.63^\circ \right )=R_5

These are the fifth roots of \displaystyle 3+4i.

Example Question #5 : De Moivre's Theorem And Finding Roots Of Complex Numbers

Find all cube roots of 1.

Possible Answers:

\displaystyle \\R_1=1\\R_2=-\frac{1}{2}+i\frac{1}{2}\sqrt{3}\\R_3=-\frac{1}{2}-i\frac{1}{2}\sqrt{3}

\displaystyle \\R_1=1\\R_2=-\frac{\sqrt{3}}{2}+i\frac{1}{2}\sqrt{3}\\R_3=-\frac{\sqrt{3}}{2}-i\frac{1}{2}\sqrt{3}

\displaystyle \\R_1=1\\R_2=-\frac{1}{2}+i\frac{1}{2}\\R_3=-\frac{1}{2}-i\frac{1}{2}

\displaystyle \\R_1=1\\R_2=-\frac{1}{2}+i\sqrt{3}\\R_3=-\frac{1}{2}-i\sqrt{3}

Correct answer:

\displaystyle \\R_1=1\\R_2=-\frac{1}{2}+i\frac{1}{2}\sqrt{3}\\R_3=-\frac{1}{2}-i\frac{1}{2}\sqrt{3}

Explanation:

Begin by converting the complex number to polar form:

\displaystyle 1=\cos0^\circ+i\sin0^\circ

Next, put this in its generalized form, using k which is any integer, including zero:

\displaystyle 1=\cos(0^\circ+k360^\circ)+i\sin(0^\circ+k360^\circ)

Using De Moivre's theorem, a fifth root of 1 is given by:

\displaystyle [\cos(k360^\circ)+i\sin(k360^\circ)] ^\frac{1}{3}

\displaystyle =1^\frac{1}{3}\cdot \left [\cos\left (\frac{k360^\circ}{3} \right )+i\sin\left (\frac{k360^\circ}{3} \right ) \right ]

\displaystyle =\cos k 120^\circ+i\sin k120^\circ

Assigning the values \displaystyle k=0, 1, 2 will allow us to find the following roots. In general, use the values \displaystyle k=0, 1, 2, ... , n-1.

\displaystyle k=0: \cos0^\circ+i\sin0^\circ=1=R_1

\displaystyle k=1: \cos120^\circ+i\sin120^\circ=-\frac{1}{2}+i\frac{1}{2}\sqrt{3}=R_2

\displaystyle k=2: \cos240^\circ+i\sin240^\circ=-\frac{1}{2}-i\frac{1}{2}\sqrt{3}=R_3

 

These are the cube roots of 1.

Example Question #2 : Complex Numbers/Polar Form

Find all fourth roots of \displaystyle -8-8i\sqrt{3}.

Possible Answers:

\displaystyle \\R_1=1+i\sqrt{3}\\ R_2=-\sqrt{3}+i\\ R_3=-1-i\sqrt{3}\\ R_4=\sqrt{3}-i

\displaystyle \\R_1=1-i\sqrt{3}\\ R_2=-\sqrt{3}-i\\ R_3=-1+i\sqrt{3}\\ R_4=\sqrt{3}+i

\displaystyle \\R_1=-1-i\sqrt{3}\\ R_2=\sqrt{3}-i\\ R_3=1+i\sqrt{3}\\ R_4=-\sqrt{3}+i

\displaystyle \\R_1=-1+i\sqrt{3}\\ R_2=\sqrt{3}+i\\ R_3=1-i\sqrt{3}\\ R_4=-\sqrt{3}-i

Correct answer:

\displaystyle \\R_1=1+i\sqrt{3}\\ R_2=-\sqrt{3}+i\\ R_3=-1-i\sqrt{3}\\ R_4=\sqrt{3}-i

Explanation:

Begin by converting the complex number to polar form:

\displaystyle -8-8i\sqrt{3}=16(\cos240^\circ+i\sin240^\circ)

Next, put this in its generalized form, using k which is any integer, including zero:

\displaystyle 16[\cos(240^\circ+k360^\circ)+i\sin(240^\circ+k360^\circ)]

Using De Moivre's theorem, a fifth root of \displaystyle -8-8i\sqrt{3} is given by:

\displaystyle \left [16\cos(240^\circ+k360^\circ)+i\sin(240^\circ+k360^\circ) \right ]^\frac{1}{4}

\displaystyle =16^\frac{1}{4}\left [\cos\left (\frac{240^\circ}{4}+\frac{k360^\circ}{4} \right )+i\sin\left (\frac{240^\circ}{4}+\frac{k360^\circ}{4} \right ) \right ]

\displaystyle =2\left [\cos\left (60^\circ+k90^\circ \right )+i\sin\left (60^\circ+k90^\circ \right ) \right ]

Assigning the values \displaystyle k=0,1,2,3 will allow us to find the following roots. In general, use the values \displaystyle k=0, 1, 2, ... , n-1.

\displaystyle \\k=0: 2\left (\cos60^\circ+i\sin60^\circ \right )=2\left ( \frac{1}{2}+i\frac{1}{2}\sqrt{3} \right )=1+i\sqrt{3}=R_1\\ k=1: 2\left (\cos150^\circ+i\sin150^\circ \right )=2\left ( -\frac{1}{2}\sqrt{3}+\frac{1}{2}i \right )=-\sqrt{3}+i=R_2\\ k=2: 2\left (\cos240^\circ+i\sin240^\circ \right )=2\left ( -\frac{1}{2}-i\frac{1}{2}\sqrt{3} \right )=-1-i\sqrt{3}=R_3\\ k=3: 2\left (\cos330^\circ+i\sin330^\circ \right )=2\left ( \frac{1}{2}\sqrt{3}-\frac{1}{2}i \right )=\sqrt{3}-i=R_4

These are the fifth roots of \displaystyle -8-8i\sqrt{3}.

Learning Tools by Varsity Tutors