Trigonometry : Sum and Difference of Sines and Cosines

Study concepts, example questions & explanations for Trigonometry

varsity tutors app store varsity tutors android store

Example Questions

Example Question #11 : Sum, Difference, And Product Identities

What is the correct formula for the sum of two sines: \(\displaystyle sin(x) + sin(y)\)?

 

Possible Answers:

\(\displaystyle sin(x)+sin(y) = 2sin\frac{x+y}{2}sin\frac{x-y}{2}\)

\(\displaystyle sin(x)+sin(y) = 2sin\frac{x+y}{2}cos\frac{x+y}{2}\)

\(\displaystyle sin(x) + sin(y) = 2sin\frac{x + y}{2}cos\frac{x-y}{2}\)

\(\displaystyle sin(x)+sin(y) = 2cos\frac{x+y}{2}sin\frac{x-y}{2}\)

Correct answer:

\(\displaystyle sin(x) + sin(y) = 2sin\frac{x + y}{2}cos\frac{x-y}{2}\)

Explanation:

This is a known trigonometry identity.  Whenever you are adding two sine functions, you can plug \(\displaystyle x\) and \(\displaystyle y\) into the formula to solve for this sum

Example Question #2 : Sum And Difference Of Sines And Cosines

Solve for the following given that \(\displaystyle x = 2\pi\).  Use the formula for the sum of two sines.

 \(\displaystyle sin(\frac{\pi}{3} +x) + sin(\frac{\pi}{3} - x)\)

Possible Answers:

\(\displaystyle \pi\)

\(\displaystyle \sqrt{3}\)

\(\displaystyle \frac{1}{2}\)

\(\displaystyle 0\)

Correct answer:

\(\displaystyle \sqrt{3}\)

Explanation:

We begin by considering our formula for the sum of two sines

\(\displaystyle sin(x) + sin(y) = 2sin\frac{x + y}{2}cos\frac{x-y}{2}\)

 

 

 

We will let\(\displaystyle x = \frac{\pi}{3} + x\) and \(\displaystyle y = \frac{\pi}{3} - x\) and plug these values into our formula.

 

\(\displaystyle sin(\frac{\pi}{3} +x) + sin(\frac{\pi}{3} - x) = 2sin\frac{(\frac{\pi}{3} + x) + (\frac{\pi}{3} - x)}{2}cos\frac{(\frac{\pi}{3} + x) - (\frac{\pi}{3} - x)}{2}\)

\(\displaystyle sin(\frac{\pi}{3} + x) + sin(\frac{\pi}{3} - x) = 2sin\frac{\frac{2\pi}{3}}{2}cos\frac{2x}{2}\)

\(\displaystyle sin(\frac{\pi}{3} + x) + sin(\frac{\pi}{3} - x) = 2sin\frac{\pi}{3}cosx\)

\(\displaystyle sin(\frac{\pi}{3} + x) + sin(\frac{\pi}{3} - x) = 2(\frac{\sqrt{3}}{2})(1)\)

\(\displaystyle sin(\frac{\pi}{3} + x) + sin(\frac{\pi}{3} - x) = \sqrt{3}\)

 

Example Question #3 : Sum And Difference Of Sines And Cosines

Solve for the following using the formula for the differences of two cosines.  Do not simplify.

\(\displaystyle cos(2 + x) - cos(2 - x)\)

 

Possible Answers:

\(\displaystyle 0\)

\(\displaystyle -2sin(2)sin(x)\)

\(\displaystyle \pi\)

\(\displaystyle -2cos(2)cos(x)\)

Correct answer:

\(\displaystyle -2sin(2)sin(x)\)

Explanation:

We begin by considering the formula for the differences of two cosines.

\(\displaystyle cos(x) - cos(y) = -2sin\frac{x + y}{2}sin\frac{x - y}{2}\)

 

We will let  \(\displaystyle x = 2+x\)  and  \(\displaystyle y = 2 - x\).  Proceed by plugging these values into the formula.

\(\displaystyle cos(2+x) - cos(2 -x) = -2sin\frac{(2+x) + (2 - x)}{2}sin\frac{(2+x) - (2-x)}{2}\)

\(\displaystyle cos(2+x) - cos(2 -x) = -2sin\frac{4}{2}sin\frac{2x}{2}\)

\(\displaystyle cos(2+x) - cos(2 -x) = -2sin(2)sin(x)\)

 

 

Example Question #12 : Sum, Difference, And Product Identities

Which of the following completes the identity \(\displaystyle cos(\alpha + \beta) =\)

 

 

Possible Answers:

\(\displaystyle cos(\alpha)cos(\beta) - cos(\alpha)cos(\beta)\)

\(\displaystyle sin(\alpha)cos(\beta) - cos(\alpha)cos(\beta)\)

\(\displaystyle sin(\alpha)sin(\beta) - sin(\alpha)sin(\beta)\)

\(\displaystyle cos(\alpha)cos(\beta) - sin(\alpha)sin(\beta)\)

Correct answer:

\(\displaystyle cos(\alpha)cos(\beta) - sin(\alpha)sin(\beta)\)

Explanation:

This is a known trigonometry identity and has been proven to be true.  It is often helpful to solve for the quantity within a cosine function when there are unknowns or if the quantity needs to be simplified

Example Question #5 : Sum And Difference Of Sines And Cosines

Solve for the following using the correct identity:

\(\displaystyle sin(\frac{\pi}{4} + \frac{\pi}{6})\)

 

 

Possible Answers:

\(\displaystyle sin(\frac{\pi}{4} + \frac{\pi}{6}) =\frac{\sqrt{6}}{4}\)

\(\displaystyle sin(\frac{\pi}{4} + \frac{\pi}{6}) =\sqrt{6} + 2\sqrt{2}\)

\(\displaystyle sin(\frac{\pi}{4} + \frac{\pi}{6}) =\frac{\sqrt{2}}{2}\)

\(\displaystyle sin(\frac{\pi}{4} + \frac{\pi}{6}) =\frac{\sqrt{6} + 2\sqrt{2}}{4}\)

Correct answer:

\(\displaystyle sin(\frac{\pi}{4} + \frac{\pi}{6}) =\frac{\sqrt{6} + 2\sqrt{2}}{4}\)

Explanation:

To solve this problem we must use the identity

\(\displaystyle sin(\alpha + \beta) = sin(\alpha)cos(\beta) + cos(\alpha)sin(\beta)\).  We will let \(\displaystyle \alpha = \frac{\pi}{4}\) and  \(\displaystyle \beta = \frac{\pi}{6}\).

 

\(\displaystyle sin(\frac{\pi}{4} + \frac{\pi}{6}) = sin(\frac{\pi}{4})cos(\frac{\pi}{6}) + cos(\frac{\pi}{4})sin(\frac{\pi}{6})\)

 

 

 

\(\displaystyle sin(\frac{\pi}{4} + \frac{\pi}{6}) = (\frac{\sqrt{2}}{2})(\frac{\sqrt{3}}{2}) + (\frac{\sqrt{2}}{2})(\frac{1}{2})\)

 

\(\displaystyle sin(\frac{\pi}{4} + \frac{\pi}{6}) =\frac{\sqrt{6}}{4} + \frac{\sqrt{2}}{2}\)

 

\(\displaystyle sin(\frac{\pi}{4} + \frac{\pi}{6}) =\frac{\sqrt{6} + 2\sqrt{2}}{4}\)

Example Question #6 : Sum And Difference Of Sines And Cosines

True or False: To solve for a problem in the form of \(\displaystyle cos(\alpha - \beta)\), I use the identity \(\displaystyle cos(\alpha) - cos(\beta) = -2sin\frac{\alpha + \beta}{2}sin\frac{\alpha - \beta}{2}\).

Possible Answers:

False

True 

Correct answer:

False

Explanation:

This answer is false.  \(\displaystyle cos(\alpha - \beta)\) is not the same as \(\displaystyle cos(\alpha) - cos(\beta)\).

For example, say \(\displaystyle \alpha = \frac{2\pi}{3}\) and \(\displaystyle \beta = \frac {\pi}{3}\)

 

\(\displaystyle cos(\frac{2\pi}{3} - \frac{\pi}{3}) = cos(\frac{\pi}{3}) = \frac{1}{2}\)

 

\(\displaystyle cos(\frac{2\pi}{3}) - cos(\frac{\pi}{3} = -\frac{1}{2} - \frac{1}{2} = -1\)

 

 

And so the correct identity to use for this is

 

\(\displaystyle cos(\alpha - \beta) = cos(\alpha)cos(\beta) +sin(\alpha)sin(\beta)\)

Example Question #7 : Sum And Difference Of Sines And Cosines

Solve for the following using the correct identity:

\(\displaystyle cos(45 + 30)\)

Possible Answers:

\(\displaystyle cos(45 + 30) = \sqrt{6} - 2\sqrt{2}\)

\(\displaystyle cos(45 + 30) = - 2\sqrt{2}\)

\(\displaystyle cos(45 + 30) = \frac{\sqrt{2} - 2\sqrt{6}}{4}\)

\(\displaystyle cos(45 + 30) = \frac{\sqrt{6} - 2\sqrt{2}}{4}\)

Correct answer:

\(\displaystyle cos(45 + 30) = \frac{\sqrt{6} - 2\sqrt{2}}{4}\)

Explanation:

The correct identity to use for this kind of problem is

\(\displaystyle cos(\alpha + \beta) = cos(\alpha)cos(\beta) - sin(\alpha)sin(\beta)\)We will let \(\displaystyle \alpha = 45 = \frac{\pi}{4}\)  and   \(\displaystyle \beta = 30 = \frac{\pi}{6}\).

 

\(\displaystyle cos(45 + 30) = cos(45)cos(30) - sin(45)sin(30)\)

 

\(\displaystyle cos(45 + 30) = cos(\frac{\pi}{4})cos(\frac{\pi}{6}) - sin(\frac{\pi}{4})sin(\frac{\pi}{6})\)

\(\displaystyle cos(45 + 30) = (\frac{\sqrt{2}}{2})(\frac{\sqrt{3}}{2}) - (\frac{\sqrt{2}}{2})(\frac{1}{2})\)

\(\displaystyle cos(45 + 30) = \frac{\sqrt{6}}{2} - \frac{\sqrt{2}}{2}\)

\(\displaystyle cos(45 + 30) = \frac{\sqrt{6} - 2\sqrt{2}}{4}\)

Example Question #13 : Sum, Difference, And Product Identities

Which of the following is the correct to complete the following identity: \(\displaystyle sin(\alpha - \beta) =\) ___?

Possible Answers:

\(\displaystyle sin(\alpha)sin(\beta) - sin(\alpha)sin(\beta)\)

\(\displaystyle sin(\alpha)cos(\alpha) - cos(\beta)sin(\beta)\)

\(\displaystyle sin(\alpha)cos(\beta) - cos(\alpha)sin(\beta)\)

\(\displaystyle cos(\alpha)cos(\beta) - cos(\alpha)cos(\beta)\)

Correct answer:

\(\displaystyle sin(\alpha)cos(\beta) - cos(\alpha)sin(\beta)\)

Explanation:

This is a known trigonometry identity and has been proven to be true.  It is often helpful to solve for the quantity within a cosine function when there are unknowns or if the quantity needs to be simplified

Learning Tools by Varsity Tutors