Trigonometry : Trigonometry

Study concepts, example questions & explanations for Trigonometry

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Trigonometry

Simplify \(\displaystyle \frac{1}{1-\cos^2\theta}\).

Possible Answers:

\(\displaystyle \sec^2\theta\)

\(\displaystyle 1\)

\(\displaystyle \frac{1}{1-\cos^2\theta}\)

\(\displaystyle \csc^2\theta\)

\(\displaystyle \sin\theta\cos\theta\)

Correct answer:

\(\displaystyle \csc^2\theta\)

Explanation:

To simplify, recognize that \(\displaystyle 1-\cos^2\theta\) is a reworking on \(\displaystyle \sin^2+\cos^2=1\), meaning that \(\displaystyle 1-\cos^2\theta=\sin^2\theta\).

Plug that into our given equation:

\(\displaystyle \frac{1}{1-\cos^2\theta}=\frac{1}{\sin^2\theta}\)

Remember that \(\displaystyle \csc\theta=\frac{1}{\sin\theta}\), so \(\displaystyle \frac{1}{\sin^2\theta}=\csc^2\theta\).

Example Question #2 : Trigonometry

Simplify \(\displaystyle \frac{1-\cos^2\theta}{\sin\theta\cos\theta}\).

Possible Answers:

\(\displaystyle \cos\theta\)

\(\displaystyle \cot\theta\)

\(\displaystyle \tan\theta\)

\(\displaystyle \sec^2\theta\)

\(\displaystyle \csc\theta-\cos\theta\)

Correct answer:

\(\displaystyle \tan\theta\)

Explanation:

Recognize that \(\displaystyle 1-\cos^2\theta\) is a reworking on \(\displaystyle \sin^2+\cos^2=1\), meaning that \(\displaystyle 1-\cos^2\theta=\sin^2\theta\).

Plug that in to our given equation:

\(\displaystyle \frac{1-\cos^2\theta}{\sin\theta\cos\theta}=\frac{\sin^2\theta}{\sin\theta\cos\theta}\)

Notice that one of the \(\displaystyle \sin\theta\)'s cancel out.

\(\displaystyle \frac{\sin\theta}{\cos\theta}=\tan\theta\).

Example Question #1 : Pythagorean Identities

\(\displaystyle \frac{1}{(cos (33^{\circ}))^{2}} - (tan (33^{\circ}))^{2} = ?\)

Possible Answers:

\(\displaystyle 3\sqrt{3}\)

-1

\(\displaystyle \frac{5\sqrt{2}}{2}\)

1

0

Correct answer:

1

Explanation:

\(\displaystyle \frac{1}{(cos (33^{\circ}))^{2}} - (tan (33^{\circ}))^{2} = (sec (33^{\circ}))^{2}- (tan (33^{\circ}))^{2}\)

Recall the Pythagorean Identity:

\(\displaystyle 1 + (tan x)^{2} = (sec x)^{2}\)

We can rearrange the terms:

\(\displaystyle 1 = (sec x)^{2} - (tan x)^{2}\)

This is exactly what our original equation looks like, so the answer is 1.

Example Question #1 : Trigonometric Identities

Simplify the equation using identities:

\(\displaystyle \cot^{2}x\cos x \sin x+ \cos x \sin x\)

Possible Answers:

1

\(\displaystyle \cot x\)

\(\displaystyle 1-\csc x\)

\(\displaystyle \cos^{2}x\)

\(\displaystyle \sin x\)

Correct answer:

\(\displaystyle \cot x\)

Explanation:

There are a couple valid strategies for solving this problem. The simplest is to first factor out \(\displaystyle \cos x\sin x\) from both sides. This leaves us with:

\(\displaystyle \cot^{2}x\cos x\sin x + \cos x \sin x = (\cos x \sin x)(cot^{2}x + 1)\)

Next, substitute with the known identity \(\displaystyle \cot^{2}x + 1=\csc^{2}x\) to get:

\(\displaystyle \cos x\sin x (\csc^{2}x)\)

From here, we can eliminate the quadratic by converting:

\(\displaystyle \csc^{2}x= \frac{1}{\sin^{2}x}\)

giving us

\(\displaystyle \frac{\cos x\sin x}{\sin^{2}x}=\frac{\cos x}{\sin x}= \cot x\)

Thus,

\(\displaystyle \cot^{2}x\cos x\sin x+\cos x\sin x = \cot x\)

Example Question #3 : Trigonometry

Simplify the expression: \(\displaystyle (1+\cos a)(1-\cos a)\)

Possible Answers:

\(\displaystyle \sin a\)

\(\displaystyle \cos a\)

The equation cannot be further simplified.

\(\displaystyle 1-\cos^{2}a\)

\(\displaystyle \sin^{2}a\)

Correct answer:

\(\displaystyle \sin^{2}a\)

Explanation:

The expression \(\displaystyle (1-\cos a)(1+\cos a)\) represents a difference of squares. In this case, the product is \(\displaystyle 1-\cos^{2}a\) (remember that 1 is also a perfect square).

One Pythagoran identity for trigonometric functions is: 

\(\displaystyle 1-\cos^{2}a = \sin^{2}a\)

Thus, we can say that the most simplified version of the expression is \(\displaystyle \sin^{2}a\).

Example Question #3 : Pythagorean Identities

If theta is in the second quadrant, and \(\displaystyle sin(\theta)= \frac{3}{5}\), what is \(\displaystyle cos(\theta)\)?

Possible Answers:

\(\displaystyle \frac{3}{5}\)

\(\displaystyle \frac{4}{5}\)

\(\displaystyle -\frac{3}{5}\)

\(\displaystyle -\frac{4}{5}\)

\(\displaystyle \frac{5}{3}\)

Correct answer:

\(\displaystyle -\frac{4}{5}\)

Explanation:

Write the Pythagorean Identity.

\(\displaystyle sin^2(\theta)+cos^2(\theta)=1\)

Substitute the value of \(\displaystyle sin(\theta)\) and solve for \(\displaystyle cos(\theta)\).

\(\displaystyle (\frac{3}{5})^2+cos^2(\theta)=1\)

\(\displaystyle cos^2(\theta)=1-(\frac{3}{5})^2\)

\(\displaystyle cos^2(\theta)=1-(\frac{3}{5})^2= \frac{25}{25}-\frac{9}{25}=\frac{16}{25}\)

\(\displaystyle cos(\theta)=\pm \sqrt{\frac{16}{25}}=\pm \frac{4}{5}\)

Since the cosine is in the second quadrant, the correct answer is:

\(\displaystyle cos(\theta)=-\frac{4}{5}\)

Example Question #1 : Pythagorean Identities

For which values of \(\displaystyle x\) is the following equation true?

\(\displaystyle sin(x)cos(x)tan(x) =1-cos^2(x)\)

Possible Answers:

\(\displaystyle 0^{\circ}\leq x \leq 180^{\circ}\)

\(\displaystyle 0^{\circ}\leq x \leq 90^{\circ}\)

\(\displaystyle \mathbb{R}=(-\infty, \infty )\)

\(\displaystyle 0^{\circ}\leq x < 360^{\circ}\)

\(\displaystyle x = 90^{\circ}, 180^{\circ}, 270^{\circ}\)

Correct answer:

\(\displaystyle \mathbb{R}=(-\infty, \infty )\)

Explanation:

According to the Pythagorean identity

\(\displaystyle sin^2x+cos^2x=1\),

the right hand side of this equation can be rewritten as \(\displaystyle sin^2x\). This yields the equation

\(\displaystyle sinxcosxtanx =sin^2x\) .

Dividing both sides by \(\displaystyle sinx\) yields:

\(\displaystyle cosxtanx=sinx\) .

Dividing both sides by \(\displaystyle cosx\) yields:

\(\displaystyle tanx=\frac{sinx}{cosx}\) .

This is precisely the definition of the tangent function; since the domain of \(\displaystyle tanx\) consists of all real numbers, the values of \(\displaystyle x\) which satisfy the original equation also consist of all real numbers. Hence, the correct answer is 

\(\displaystyle \mathbb{R}=(-\infty, \infty )\).

 

 

Example Question #1 : Trigonometry

\(\displaystyle \sin^2x + \cos^2x + \tan^2x =\)

Possible Answers:

\(\displaystyle \sec^2x\)

\(\displaystyle \tan^2x-\cot^2x\)

\(\displaystyle \csc^2x\)

\(\displaystyle 1-\cos^2x\)

Correct answer:

\(\displaystyle \sec^2x\)

Explanation:

By the Pythagorean identity, the first two terms simplify to 1:

\(\displaystyle \sin^2x+\cos^2x+\tan^2x=1+\tan^2x\).

Dividing the Pythagorean identity by \(\displaystyle \cos^2x\) allows us to simplify the right-hand side.

\(\displaystyle \frac{\sin^2x}{\cos^2x}+\frac{\cos^2x}{\cos^2x}=\frac{1}{\cos^2x}\)

\(\displaystyle \tan^2x+1=\sec^2x\)

Example Question #1 : Pythagorean Identities

What is \(\displaystyle sin^2x+cos^2x\) equal to?

Possible Answers:

\(\displaystyle 1\)

\(\displaystyle tan(x)\)

\(\displaystyle 0\)

\(\displaystyle e\)

Correct answer:

\(\displaystyle 1\)

Explanation:

Step 1: Recall the trigonometric identity that has sine and cosine in it...

\(\displaystyle sin^2x+cos^2x=1\)

The sum is equal to 1.

Example Question #1 : Pythagorean Identities

Given \(\displaystyle \sin(\theta)=\frac{1}{4}\), what is \(\displaystyle \cos(\theta)\)?

Possible Answers:

\(\displaystyle \cos(\theta)=15/16\)

\(\displaystyle \cos(\theta)=15/4\)

\(\displaystyle \cos(\theta)=\pm\sqrt{\frac{15}{4}}\)

\(\displaystyle \cos(\theta)=\pm15/4\)

Correct answer:

\(\displaystyle \cos(\theta)=\pm\sqrt{\frac{15}{4}}\)

Explanation:

Using the Pythagorean Identity

\(\displaystyle \sin^2+\cos^2=1\),

one can solve for \(\displaystyle \cos^2(\theta)\) by plugging in \(\displaystyle (1/4)^2\) for \(\displaystyle \sin^2\).

Solving for \(\displaystyle \cos^2(\theta)\), you get it equal to \(\displaystyle 15/16\).

Taking the square root of both sides will get the correct answer of 

\(\displaystyle \cos(\theta)=\pm\sqrt{\frac{15}{4}}\).

 

Learning Tools by Varsity Tutors