Trigonometry : Unit Circle and Radians

Study concepts, example questions & explanations for Trigonometry

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Unit Circle

What point corresponds to the angle \displaystyle -\pi on the unit circle?

12

Possible Answers:

\displaystyle (1,0)

\displaystyle (-1,-1)

\displaystyle (0,0)

\displaystyle (1,1)

\displaystyle (-1,0)

Correct answer:

\displaystyle (-1,0)

Explanation:

The unit circle is the circle of radius one centered at the origin \displaystyle (0,0) in the Cartesian coordinate system. \displaystyle -\pi is equivalent to \displaystyle -180^{\circ} which corresponds to the point \displaystyle (-1,0) on the unit circle.

Example Question #2 : Unit Circle

What point corresponds to an angle of \displaystyle \frac{5\pi}{2} radians on the unit circle?

12

Possible Answers:

\displaystyle (0,1)

\displaystyle (1,1)

\displaystyle (-1,-1)

\displaystyle (0,0)

\displaystyle (-1,1)

Correct answer:

\displaystyle (0,1)

Explanation:

The unit circle is the circle of radius one centered at the origin \displaystyle (0,0) in the Cartesian coordinate system. \displaystyle \frac{5\pi}{2} radians is equivalent to \displaystyle \frac{5\pi}{2}\times \frac{180^{\circ}}{\pi}=450^{\circ}. This is a full circle \displaystyle 360^{\circ} plus a quarter-turn \displaystyle 90^{\circ} more. So, the angle \displaystyle \frac{5\pi}{2} corresponds to the point \displaystyle (0,1) on the unit circle.

Example Question #1 : Unit Circle

Give the angle between \displaystyle 0^{\circ} and \displaystyle 360^{\circ} that corresponds to the point \displaystyle (-1,0).

Possible Answers:

\displaystyle 120^{\circ}

\displaystyle 90^{\circ}

\displaystyle 60^{\circ}

\displaystyle 180^{\circ}

\displaystyle 45^{\circ}

Correct answer:

\displaystyle 180^{\circ}

Explanation:

The angle \displaystyle \pi or \displaystyle 180^{\circ} corresponds to the point \displaystyle (-1,0).

Example Question #3 : Unit Circle

What point corresponds to the angle \displaystyle \frac{\pi}{2} on the unit circle?

 

12

 

Possible Answers:

\displaystyle (-1,-1)

\displaystyle (1,1)

\displaystyle (0,1)

\displaystyle (1,0)

\displaystyle (0,-1)

Correct answer:

\displaystyle (0,1)

Explanation:

The unit circle is the circle of radius one centered at the origin \displaystyle (0,0) in the Cartesian coordinate system. \displaystyle \frac{\pi}{2} is equivalent to \displaystyle 90^{\circ} which corresponds to the point \displaystyle (0,1) on the unit circle.

 

 

Example Question #1 : Unit Circle

Which of the following points is NOT on the unit circle?

Possible Answers:

\displaystyle (1,0)

\displaystyle (\frac{\sqrt{3}}{2}, \frac{\sqrt{2}}{2})

\displaystyle (-\frac{1}{2}, -\frac{\sqrt{3}}{2})

\displaystyle (\frac{-\sqrt{2}}{2}, \frac{\sqrt{2}}{2})

\displaystyle (0, -1)

Correct answer:

\displaystyle (\frac{\sqrt{3}}{2}, \frac{\sqrt{2}}{2})

Explanation:

For a point to be on the unit circle, it has to have a radius of one.  Therefore, the sum of the squares of point's coordinates must also equal one.  

Let's try the point \displaystyle (\frac{\sqrt{3}}{2}, \frac{\sqrt{2}}{2}).

\displaystyle (\frac{\sqrt{3}}{2})^{2} + (\frac{\sqrt{2}}{2})^{2} = \frac{5}{4} \neq 1

Therefore, this point is not on the unit circle.

Example Question #2 : Unit Circle

When looking at the unit circle, what are the coordinates for an angle of \displaystyle \frac{\pi}{4}?

Possible Answers:

\displaystyle \left(\frac{\sqrt{3}}{2},\frac{1}{2}\right)

\displaystyle \left(\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2}\right)

\displaystyle \left(\frac{1}{2},\frac{\sqrt{3}}{2}\right)

\displaystyle (\sqrt{2},\sqrt{2})

\displaystyle (0,1)

Correct answer:

\displaystyle \left(\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2}\right)

Explanation:

The coordinates of the point on the circle for each angle are \displaystyle (\cos\theta,\sin\theta).

Since \displaystyle \cos\frac{\pi}{4}=\frac{\sqrt{2}}{2} and \displaystyle \sin\frac{\pi}{4}=\frac{\sqrt{2}}{2}, the point will be \displaystyle (\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2}).

Example Question #1 : Unit Circle

What is the radius of the unit circle? 

Possible Answers:

\displaystyle \frac{1}{2}

\displaystyle 2

\displaystyle 1

\displaystyle \frac{3}{4}

\displaystyle 3

Correct answer:

\displaystyle 1

Explanation:

By definition, the radius of the unit circle is 1. 

Example Question #1 : Unit Circle

What point corresponds to the angle \displaystyle \frac{\pi}{3} on the unit circle?

 

8

Possible Answers:

\displaystyle (1,1)

\displaystyle \left(\frac{1}{2},\frac{1}{2}\right)

\displaystyle \left(\frac{1}{2},\frac{\sqrt{3}}{2}\right)

\displaystyle (0,-1)

\displaystyle \left(\frac{\sqrt{3}}{2},\frac{1}{2}\right)

Correct answer:

\displaystyle \left(\frac{1}{2},\frac{\sqrt{3}}{2}\right)

Explanation:

In order to find the point corresponds to the angle \displaystyle \frac{\pi}{3} on the unit circle we can write:

 

\displaystyle t=\frac{\pi}{3}\ or\ 60^{\circ}

 

In the unit circle which has the radious of  \displaystyle R=1  we can write:

 

\displaystyle cos\ t=\frac{x}{R}=\frac{x}{1}=x\Rightarrow x=cos(60^{\circ})=\frac{1}{2}

\displaystyle sin\ t=\frac{y}{R}=\frac{y}{1}=y\Rightarrow y=sin(60^{\circ})=\frac{\sqrt{3}}{2}

 

So the point corresponds to the angle \displaystyle \frac{\pi}{3} on the unit circle is \displaystyle (\frac{1}{2},\frac{\sqrt{3}}{2})

Example Question #4 : Unit Circle

What point corresponds to an angle of \displaystyle 540^{\circ}  on the unit circle?

12

Possible Answers:

\displaystyle (-1,-1)

\displaystyle (1,-1)

\displaystyle (0,1)

\displaystyle (-1,0)

\displaystyle (1,1)

Correct answer:

\displaystyle (-1,0)

Explanation:

The unit circle is the circle of radius one centered at the origin \displaystyle (0,0) in the Cartesian coordinate system. \displaystyle 540^{\circ} is a full circle \displaystyle 360^{\circ} plus a \displaystyle 180^{\circ} more. So, the angle \displaystyle 540^{\circ} corresponds to the point \displaystyle (-1,0) on the unit circle.

Example Question #1 : Unit Circle

What must be the area of the unit circle?

Possible Answers:

\displaystyle \pi

The area can vary.

\displaystyle \frac{\pi}{2}

\displaystyle \frac{\pi}{4}

\displaystyle 2\pi

Correct answer:

\displaystyle \pi

Explanation:

The unit circle must have a radius of 1.

Use the circular area formula to find the area.

\displaystyle A_{circle}= \pi r^2= \pi

 

Learning Tools by Varsity Tutors