Advanced Geometry : How to find the length of the diagonal of a trapezoid

Study concepts, example questions & explanations for Advanced Geometry

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : How To Find The Length Of The Diagonal Of A Trapezoid

What is the length of the diagonals of trapezoid \displaystyle ABCD? Assume the figure is an isoceles trapezoid.

Trapezoid

Possible Answers:

\displaystyle \sqrt{96}m

\displaystyle \sqrt{95}m

\displaystyle \sqrt{97}m

\displaystyle \sqrt{99}m

\displaystyle \sqrt{98}m

Correct answer:

\displaystyle \sqrt{97}m

Explanation:

To find the length of the diagonal, we need to use the Pythagorean Theorem. Therefore, we need to sketch the following triangle within trapezoid \displaystyle ABCD:

Trapezoid

We know that the base of the triangle has length \displaystyle 9\: m. By subtracting the top of the trapezoid from the bottom of the trapezoid, we get:

\displaystyle 12\: m - 6\: m = 6\: m

Dividing by two, we have the length of each additional side on the bottom of the trapezoid:

\displaystyle \frac{6\: m}{2} = 3\: m

Adding these two values together, we get \displaystyle 9\: m.

The formula for the length of diagonal \displaystyle AC uses the Pythagoreon Theorem:

\displaystyle AC^2 = AE^2 + EC^2, where \displaystyle E is the point between \displaystyle A and \displaystyle D representing the base of the triangle.

Plugging in our values, we get:

\displaystyle AC^2 = (9\: m)^2 + (4\: m)^2

\displaystyle AC^2 = 81\: m^2 + 16\: m^2

\displaystyle AC^2 = 97\: m^2

\displaystyle AC = \sqrt{97}\: m

Example Question #1 : How To Find The Length Of The Diagonal Of A Trapezoid

Find the length of both diagonals of this quadrilateral.

Trapezoid 1

Possible Answers:

\displaystyle \sqrt{97}, \sqrt{65}

\displaystyle \sqrt{41}, \sqrt{41}

\displaystyle \sqrt{97}, \sqrt{41}

\displaystyle \sqrt{85}, \sqrt{20}

Correct answer:

\displaystyle \sqrt{97}, \sqrt{65}

Explanation:

All of the lengths with one mark have length 5, and all of the side lengths with two marks have length 4. With this knowledge, we can add side lengths together to find that one diagonal is the hypotenuse to this right triangle:

Trapezoid solution 3

Using Pythagorean Theorem gives:

\displaystyle 4^2 + 9^2 = C^2

\displaystyle 16+81=C^2

\displaystyle 97 = C^2 take the square root of each side

\displaystyle \sqrt{97}= C

Similarly, the other diagonal can be found with this right triangle:

Trapezoid solution 4

Once again using Pythagorean Theorem gives an answer of \displaystyle \sqrt{65}

Example Question #2 : How To Find The Length Of The Diagonal Of A Trapezoid

Find the length of the diagonals of this isosceles trapezoid, with \displaystyle \textup{Height}=8.

Trapezoid 2

Possible Answers:

\displaystyle \sqrt{204}

\displaystyle \sqrt{185}

\displaystyle \sqrt{128}

\displaystyle \sqrt{73}

Correct answer:

\displaystyle \sqrt{185}

Explanation:

To find the length of the diagonals, split the top side into 3 sections as shown below:

Trapezoid solution 1

The two congruent sections plus 8 adds to 14. \displaystyle 14 - 8 = 6, so the two congruent sections add to 6. They must each be 3. This means that the top of the right triangle with the diagonal as a hypotenuse must be 11, since \displaystyle 14-3=11.

Trapezoid solution 2

We can solve for the diagonal, now pictured, using Pythagorean Theorem:

\displaystyle 11^2 + 8^2 = C^2

\displaystyle 121 + 64 = C^2

\displaystyle 185 = C^2 take the square root of both sides

\displaystyle \sqrt{185}=C

Example Question #1 : How To Find The Length Of The Diagonal Of A Trapezoid

Find the length of the diagonal of the isosceles trapezoid given below. 

Trap1

Possible Answers:

\displaystyle 4\sqrt34\ cm

\displaystyle 16\ cm

\displaystyle 24\ cm

\displaystyle 20\sqrt2\ cm

Correct answer:

\displaystyle 4\sqrt34\ cm

Explanation:

In order to calculate the length of the diagonal, we first must assume that the height is perpendicular to both the top and bottom of the trapezoid. 

Knowing this, we can draw in the diagonal as shown below and use the Pythagorean Theorem to solve for the diagonal. 

Trap2

\displaystyle Using\ the\ pythagorean\ theorem\ we\ get: 12^2+20^2=diagonal^2

\displaystyle This\ simplifies\ to\ become\ 144+400=diagonal^2

\displaystyle 544=diagonal^2

We now take the square root of both sides: 

\displaystyle \sqrt544=\sqrt diagonal^2

\displaystyle \sqrt16*\sqrt34=diagonal

\displaystyle 4\sqrt34=diagonal

Example Question #1 : How To Find The Length Of The Diagonal Of A Trapezoid

Find the length of diagonal \displaystyle \overline{AB} of the trapezoid.

Varsity7

Possible Answers:

\displaystyle AB = \sqrt{41+10\cdot \sqrt{7}} \approx 8.21

\displaystyle AB = \sqrt{34}

\displaystyle AB = 8 + 6 = 14

\displaystyle AB = 4 + 5 = 9

\displaystyle AB = \sqrt{73}

Correct answer:

\displaystyle AB = \sqrt{41+10\cdot \sqrt{7}} \approx 8.21

Explanation:

1) The diagonal \displaystyle \overline{AB} can be found from \displaystyle \bigtriangleup BAE by using the Pythagorean Theorem.

2) The length of the base of \displaystyle \bigtriangleup CAD\displaystyle \overline{AD} has to be found because \displaystyle AE = AD + DE is the length of the base of \displaystyle \bigtriangleup BAE.

3) \displaystyle AE = 5 + AD.

4) Using the Pythagorean Theorem on \displaystyle \bigtriangleup CAD to find \displaystyle m(\overline{AD}),

\displaystyle 4^{2} = 3^{2} + (AD)^{2}

\displaystyle 4^{2} - 3^{2} = (AD)^{2}

\displaystyle 16 - 9 = (AD)^{2}

\displaystyle 7 = (AD)^{2}

\displaystyle \sqrt{7} = AD

5) Using the Pythagorean Theorem on \displaystyle \bigtriangleup BAE to find \displaystyle m(\overline{AB}),

\displaystyle (AB)^{2} = (5 + \sqrt{7})^{2} + 3^{2}

\displaystyle = 5^{2} + 2(5\cdot \sqrt{7}) + (\sqrt{7})^{2} + 9

\displaystyle = 25 + 10\cdot \sqrt{7} + 7 + 9

\displaystyle = 41 + 10\sqrt{7}

\displaystyle \sqrt{(AB)^{2}} = \sqrt{41 + 10\sqrt{7}}

\displaystyle AB = \sqrt{41 + 10\sqrt{7}} \approx 8.21

 

Example Question #3 : How To Find The Length Of The Diagonal Of A Trapezoid

Trapezoid

Figure NOT drawn to scale.

Refer to the above diagram, which shows Trapezoid \displaystyle TRAP with diagonal \displaystyle \overline{TA}. To the nearest whole number, give the length of \displaystyle \overline{TA}.

Possible Answers:

\displaystyle 64

\displaystyle 87

\displaystyle 97

\displaystyle 76

\displaystyle 104

Correct answer:

\displaystyle 97

Explanation:

To illustrate how to determine the correct length, draw a perpendicular segment from \displaystyle R to \displaystyle \overline{PA}, calling the point of intersection \displaystyle X.

Trapezoid

\displaystyle \overline{RX} divides the trapezoid into Rectangle \displaystyle TRXP and right triangle \displaystyle \bigtriangleup RXA .

Opposite sides of a rectangle are congruent, so \displaystyle PX = TR = 40.

\displaystyle m \angle TRA = 150 ^{\circ }. The two angles of a trapezoid along the same leg - in particular, \displaystyle \angle TRA and \displaystyle \angle RAP - are supplementary, so 

\displaystyle m \angle RAP = 180 ^{\circ } - m \angle TRA

\displaystyle = 180 ^{\circ } - 150 ^{\circ }

\displaystyle = 30 ^{\circ }

By the 30-60-90 Triangle Theorem,

\displaystyle XA = RX\cdot \sqrt{3}

Opposite sides of a rectangle are congruent, so \displaystyle RX= TP = 30, and

\displaystyle XA = 30 \sqrt{3}

\displaystyle \approx 30 \cdot 1.7321

\displaystyle \approx 30 \cdot 1.7321

\displaystyle \approx 52

\displaystyle PA = PX + XA \approx 40+ 52 \approx 92

\displaystyle \overline{TA} is the hypotenuse of right triangle \displaystyle \bigtriangleup TPA, so by the Pythagorean Theorem, its length can be calculated to be

\displaystyle TA = \sqrt{ (TP )^{2}+ (PA)^{2}}

Set \displaystyle TP = 30 and \displaystyle PA = 92:

\displaystyle TA = \sqrt{ 30 ^{2}+ 92^{2}}

\displaystyle = \sqrt{ 900 + 8,464 }

\displaystyle = \sqrt{9,364 }

\displaystyle \approx 97

Example Question #1 : How To Find The Length Of The Diagonal Of A Trapezoid

Trapezoid

Figure NOT drawn to scale.

Refer to the above diagram, which shows Trapezoid \displaystyle TRAP with diagonal \displaystyle \overline{TA}. To the nearest whole number, give the length of \displaystyle \overline{TA}.

Possible Answers:

\displaystyle 65

\displaystyle 76

\displaystyle 104

\displaystyle 87

\displaystyle 97

Correct answer:

\displaystyle 65

Explanation:

To illustrate how to determine the correct length, draw a perpendicular segment from \displaystyle R to \displaystyle \overline{PA}, calling the point of intersection \displaystyle X.

Trapezoid

\displaystyle \overline{RX} divides the trapezoid into Rectangle \displaystyle TRXP and right triangle \displaystyle \bigtriangleup RXA .

Opposite sides of a rectangle are congruent, so \displaystyle PX = TR = 40.

\displaystyle m \angle TRA = 120 ^{\circ }. The two angles of a trapezoid along the same leg - in particular, \displaystyle \angle TRA and \displaystyle \angle RAP - are supplementary, so 

\displaystyle m \angle RAP = 180 ^{\circ } - m \angle TRA

\displaystyle = 180 ^{\circ } - 120 ^{\circ }

\displaystyle = 60 ^{\circ }

By the 30-60-90 Triangle Theorem,

\displaystyle XA = \frac{RX}{ \sqrt{3} }

Opposite sides of a rectangle are congruent, so \displaystyle RX= TP = 30, and

\displaystyle XA = \frac{RX}{ \sqrt{3} }

\displaystyle \approx \frac{30 }{1.7321}

\displaystyle \approx 17.3

\displaystyle PA = PX + XA \approx 40+ 17.3 \approx 57.3

\displaystyle \overline{TA} is the hypotenuse of right triangle \displaystyle \bigtriangleup TPA, so by the Pythagorean Theorem, its length can be calculated to be

\displaystyle TA = \sqrt{ (TP )^{2}+ (PA)^{2}}

Set \displaystyle TP = 30 and \displaystyle PA = 57:

\displaystyle TA = \sqrt{ 30 ^{2}+ 57.3^{2}}

\displaystyle = \sqrt{ 900 + 3,283}

\displaystyle = \sqrt{ 4,183}

\displaystyle \approx 65

 

Example Question #1 : How To Find The Length Of The Diagonal Of A Trapezoid

Trapezoid

Figure NOT drawn to scale.

Refer to the above diagram, which shows Trapezoid \displaystyle TRAP with diagonal \displaystyle \overline{TA}. To the nearest whole number, give the length of \displaystyle \overline{TA}.

Possible Answers:

\displaystyle 97

\displaystyle 64

\displaystyle 87

\displaystyle 76

\displaystyle 104

Correct answer:

\displaystyle 76

Explanation:

To illustrate how to determine the correct length, draw a perpendicular segment from \displaystyle R to \displaystyle \overline{PA}, calling the point of intersection \displaystyle X.

Trapezoid

\displaystyle \overline{RX} divides the trapezoid into Rectangle \displaystyle TRXP and right triangle \displaystyle \bigtriangleup RXA .

Opposite sides of a rectangle are congruent, so \displaystyle PX = TR = 40.

\displaystyle m \angle TRA = 135 ^{\circ }. The two angles of a trapezoid along the same leg - in particular, \displaystyle \angle TRA and \displaystyle \angle RAP - are supplementary, so 

\displaystyle m \angle RAP = 180 ^{\circ } - m \angle TRA

\displaystyle = 180 ^{\circ } - 135 ^{\circ }

\displaystyle = 45^{\circ }

By the 45-45-45 Triangle Theorem,

\displaystyle XA = RX = TP =30

and

\displaystyle PA = PX + XA = 40+ 30 = 70

\displaystyle \overline{TA} is the hypotenuse of right triangle \displaystyle \bigtriangleup TPA, so by the Pythagorean Theorem, its length can be calculated to be

\displaystyle TA = \sqrt{ (TP )^{2}+ (PA)^{2}}

Set \displaystyle TP = 30 and \displaystyle PA = 70:

\displaystyle TA = \sqrt{ 30 ^{2}+ 70^{2}}

\displaystyle = \sqrt{ 900 +4,900}

\displaystyle = \sqrt{ 5,800}

\displaystyle \approx 76

 

Learning Tools by Varsity Tutors