Algebra II : Intermediate Single-Variable Algebra

Study concepts, example questions & explanations for Algebra II

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Simplifying Polynomials

\displaystyle f(x)=-4x+3x^{2}-7+9x-12x^{2}-5x^{4}

Which of the following shows the polynomial in simplest form?

Possible Answers:

\displaystyle f(x)=9x^{2}-7

\displaystyle f(x)=-5x^{4}-9x^{2}+5x-7

The polynomial is already in simplest form.

Correct answer:

\displaystyle f(x)=-5x^{4}-9x^{2}+5x-7

Explanation:

To simplify a polynomial, we have to do two things: 1) combine like terms, and 2) rearrange the terms so that they're written in descending order of exponent.

First, we combine like terms, which requires us to identify the terms that can be added or subtracted from each other. Like terms always have the same variable (with the same exponent) attached to them. For example, you can add 1 "x-squared" to 2 "x-squareds" and get 3 "x-squareds", but 1 "x-squared" plus an "x" can't be combined because they're not like terms.

Let's identify some like terms below.

\displaystyle f(x)=\mathbf{-4x}+3x^{2}-7\mathbf{\:+\: 9x}-12x^{2}-5x^{4}

Here you can see that -4x and 9x are like terms. When we combine (add) -4x and 9x, we get 5x. So let's write 5x instead:

\displaystyle f(x)=5x+3x^{2}-7-12x^{2}-5x^{4}

Let's do the same thing with the x-squared terms:

\displaystyle f(x)=5x+\mathbf{3x^{2}}-7-\mathbf{12x^{2}}-5x^{4}

\displaystyle f(x)=5x-\mathbf{9x^{2}}-7-5x^{4}

Now there are no like terms left. Our last step is to organize the terms so that x is written in descending power:

\displaystyle f(x)=-5x^{4}-9x^{2}+5x-7

Example Question #1 : Simplifying Polynomials

Simplify the following expression.

\displaystyle (3p^{2}+8)+(-p^{2}+5)

Possible Answers:

\displaystyle 2p^{2}+3

\displaystyle -3p^{2}-3

\displaystyle 2p^{2}+13

\displaystyle -3p^{2}+40

\displaystyle -3p^{2}+13

Correct answer:

\displaystyle 2p^{2}+13

Explanation:

\displaystyle (3p^{2}+8)+(-p^{2}+5)

This is not a FOIL problem, as we are adding rather than multiplying the terms in parenteses.

Add like terms to solve.

\displaystyle 3p^{2}-p^{2}=2p^{2}

\displaystyle 8+5=13

Combining these terms into an expression gives us our answer.

\displaystyle 2p^{2}+13

Example Question #1 : Simplifying Polynomials

Rewrite the expression in simplest terms.

\displaystyle 5x^{^{3}} - 14x^{2} - 10x + 3 - (4x+3) * x^{2} - (8-10x)

Possible Answers:

\displaystyle x^3 - 11x^2 - 20x - 5

\displaystyle 5x^3 -17x^2 - 4x - 5

\displaystyle x^3 - 11x^2 - 5

 

\displaystyle 5x^3 -11x^2 - 24x - 5

\displaystyle x^{3}-17x^{2}-5

Correct answer:

\displaystyle x^{3}-17x^{2}-5

Explanation:

In simplifying this expression, be mindful of the order of operations (parenthical, division/multiplication, addition/subtraction).  

\displaystyle 5x^{^{3}} - 14x^{2} - 10x + 3 - (4x+3) * x^{2} - (8-10x)

Since operations invlovling parentheses occur first, distribute the factors into the parenthetical binomials. Note that the \displaystyle x^2 outside the first parenthetical binomial is treated as \displaystyle -x^2 since the parenthetical has a negative (minus) sign in front of it. Similarly, multiply the members of the expression in the second parenthetical by \displaystyle -1 because of the negative (minus) sign in front of it. Distributing these factors results in the following polynomial.

\displaystyle 5x^3 - 14x^2 - 10x + 3 - 4x^3 - 3x^2 - 8 + 10x

Now like terms can be added and subtracted. Arranging the members of the polynomial into groups of like terms can help with this. Be sure to retain any negative signs when rearranging the terms.

\displaystyle 5x^3 - 4x^3 -14x^2 - 3x^2 - 10x + 10x + 3 - 8

Adding and subtracting these terms results in the simplified expression below.

\displaystyle x^3 - 17x^2 -5

Example Question #1 : Simplifying Polynomials

Multiply:

 \displaystyle \left (x^{2} + 2x + 7 \right ) \left (x^{2} + x - 6 \right )

Possible Answers:

\displaystyle x^{4} + 3 x^{3} -x^{2} - 5x - 42

\displaystyle x^{4} + 3 x^{3} +3x^{2} - 5x - 42

\displaystyle x^{4} + 3 x^{3} -15x^{2} - 19x - 42

\displaystyle x^{4} + 3 x^{3} + 19x^{2} - 5x - 42

\displaystyle x^{4} + 3 x^{3} -x^{2} - 19x - 42

Correct answer:

\displaystyle x^{4} + 3 x^{3} +3x^{2} - 5x - 42

Explanation:

\displaystyle \left (x^{2} + 2x + 7 \right ) \left (x^{2} + x - 6 \right )

\displaystyle = x^{2}\left (x^{2} + x - 6 \right ) + 2x \left (x^{2} + x - 6 \right ) + 7 \left (x^{2} + x - 6 \right )

\displaystyle = x^{2} \cdot x^{2} + x^{2} \cdot x - x^{2} \cdot 6 + 2x \cdot x^{2} + 2x \cdot x - 2x \cdot 6 + 7 \cdot x^{2} + 7 \cdot x - 7 \cdot 6

\displaystyle = x^{4} + x^{3} - 6x^{2} + 2x^{3} + 2x^{2} - 12x + 7x^{2} +7x - 42

\displaystyle = x^{4} + x^{3} + 2x^{3} - 6x^{2} + 2x^{2} + 7x^{2} - 12x +7x - 42

\displaystyle = x^{4} + 3 x^{3} +3x^{2} - 5x - 42

Example Question #2 : Simplifying Polynomials

Simplify the expression.

\displaystyle \small (3x+2)-(x+4)(x+1)

Possible Answers:

\displaystyle \small -x^2-8x-6

\displaystyle \small x^2+8x+6

\displaystyle \small -x^2+8x+6

\displaystyle \small -x^2-2x-2

Correct answer:

\displaystyle \small -x^2-2x-2

Explanation:

\displaystyle \small (3x+2)-(x+4)(x+1)

Use FOIL to expand the monomials.

\displaystyle (x+4)(x+1)

\displaystyle x^2+x+4x+4=x^2+5x+4

Return this expansion to the original expression.

\displaystyle \small (3x+2)-(x^2+5x+4)

Distribute negative sign.

\displaystyle \small (3x+2)-x^2-5x-4

Combine like terms.

\displaystyle \small -x^2+3x-5x+2-4

\displaystyle \small -x^2-2x-2

Example Question #1 : Simplifying Polynomials

Divide the trinomial below by \displaystyle 9x.

\displaystyle 18x^{2}+ 9x -3

Possible Answers:

\displaystyle -x+1

\displaystyle 2x+1-\frac{1}{3x}

\displaystyle -3x+1+\frac{1}{2x}

\displaystyle 2x+1-\frac{3}{x}

\displaystyle 2x^{2}+ x -\frac{1}{3}

Correct answer:

\displaystyle 2x+1-\frac{1}{3x}

Explanation:

\displaystyle 18x^{2}+ 9x -3

We can accomplish this division by re-writing the problem as a fraction.

\displaystyle \frac{18x^2+9x-3}{9x}

The denominator will distribute, allowing us to address each element separately.

\displaystyle \frac{18x^{2}+ 9x -3}{9x}=\frac{18x^{2}}{9x}+\frac{ 9x}{9x}-\frac{3}{9x}

Now we can cancel common factors to find our answer.

\displaystyle (\frac{18}{9}* \frac{x^{2}}{x})+1-(\frac{3}{9}* \frac{1}{x})

\displaystyle 2x+1-\frac{1}{3x}

Example Question #1 : Simplifying Polynomials

Evaluate the following:

\displaystyle (2x^2+\frac{3}{4}x-5) - (x^2+x-10)

Possible Answers:

\displaystyle 3x^2-\frac{1}{4}x + 5

\displaystyle x^2-\frac{7}{4}x + 10

\displaystyle x^2-\frac{1}{4}x + 5

\displaystyle x^2-\frac{1}{4}x -15

Correct answer:

\displaystyle x^2-\frac{1}{4}x + 5

Explanation:

To subtract these two trinomials, you first need to flip the sign on every term in the second trinomial, since it is being subtrated:

\displaystyle (2x^2+\frac{3}{4}x-5) - (x^2+x-10)

\displaystyle 2x^2+\frac{3}{4}x-5 - x^2-x+10

Next you can combine like terms. You have two terms with \displaystyle x^2, two terms with \displaystyle x, and two terms with no variable:

\displaystyle x^2-\frac{1}{4}x+5

Example Question #2 : Simplifying Polynomials

Subtract the expressions below.

\displaystyle \left (\frac{1}{3}x^{2}+\frac{1}{6}xy-\frac{5}{4}y^{2} \right )-\left (\frac{1}{9}x^{2}-\frac{4}{3}xy+y^{2} \right )

Possible Answers:

\displaystyle \frac{1}{27}x^{2}-\frac{2}{9}xy-\frac{5}{4}y^{2}

\displaystyle \frac{2}{9}x^{2}+\frac{7}{6}xy-\frac{1}{4}y^{2}

None of the other answers are correct.

\displaystyle \frac{2}{9}x^{2}+\frac{3}{2}xy-\frac{9}{4}y^{2}

\displaystyle \frac{2}{9}x^{2}+\frac{3}{2}xy-\frac{5}{4}y^{2}

Correct answer:

\displaystyle \frac{2}{9}x^{2}+\frac{3}{2}xy-\frac{9}{4}y^{2}

Explanation:

\displaystyle \left (\frac{1}{3}x^{2}+\frac{1}{6}xy-\frac{5}{4}y^{2} \right )-\left (\frac{1}{9}x^{2}-\frac{4}{3}xy+y^{2} \right )

Since we are only adding and subtracting (there is no multiplication or division), we can remove the parentheses.

Regroup the expression so that like variables are together. Remember to carry positive and negative signs.

For all fractional terms, find the least common multiple in order to add and subtract the fractions.

Combine like terms and simplify.

\displaystyle \frac{2}{9}x^{2}+\frac{9}{6}xy-\frac{9}{4}y^{2}

\displaystyle \frac{2}{9}x^{2}+\frac{3}{2}xy-\frac{9}{4}y^{2}

Example Question #2 : Simplifying Polynomials

Multiply: 

\displaystyle (4x^2-5x+9)(3x-4)

Possible Answers:

\displaystyle 12x^3-31x^2+47x-36

\displaystyle 31x^3-12x^2+47x-36

\displaystyle 33x^2+27x-36

\displaystyle 16x^2+20x-36

Correct answer:

\displaystyle 12x^3-31x^2+47x-36

Explanation:

Set up this problem vertically like you would a normal multiplication problem without variables. Then, multiply the \displaystyle -4 term to each term in the trinomial. Next, multiply the \displaystyle 3x term to each term in the trinomial (keep in mind your placeholder!).

Then combine the two, which yields:

\displaystyle 12x^3-31x^2+47x-36

Example Question #1 : Intermediate Single Variable Algebra

Evaluate the following:

\displaystyle \frac{1}{2}(4x^2-5x+10)+\frac{1}{4}(7x^2-5x+12)

Possible Answers:

\displaystyle 3\frac{3}{4}x^2+3\frac{3}{2}x+8

\displaystyle 3\frac{3}{4}x^2-3\frac{3}{4}x+8

\displaystyle -3\frac{1}{4}x^2-3\frac{3}{4}x+8

\displaystyle 3\frac{3}{4}x^2-3\frac{3}{4}x+\frac{3}{4}

\displaystyle 3\frac{3}{4}x^2-3\frac{3}{4}x-8

Correct answer:

\displaystyle 3\frac{3}{4}x^2-3\frac{3}{4}x+8

Explanation:

\displaystyle \frac{1}{2}(4x^2-5x+10)+\frac{1}{4}(7x^2-5x+12)

First distribute the \displaystyle \frac{1}{2}:

\displaystyle 2x^2-\frac{5}{2}x+5+\frac{1}{4}(7x^2-5x+12)

Then distribute the \displaystyle \frac{1}{4}:

\displaystyle 2x^2-\frac{5}{2}x+5+\frac{7}{4}x^2-\frac{5}{4}x+\frac{12}{4}

Finally combine like terms:

\displaystyle 2x^2-\frac{10}{4}x+5+1\frac{3}{4}x^2-\frac{5}{4}x+3

\displaystyle 3\frac{3}{4}x^2-\frac{15}{4}x+8

\displaystyle 3\frac{3}{4}x^2-3\frac{3}{4}x+8

Learning Tools by Varsity Tutors