AP Calculus BC : Functions, Graphs, and Limits

Study concepts, example questions & explanations for AP Calculus BC

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Parametric, Polar, And Vector

Rewrite as a Cartesian equation:

\displaystyle x = t^{2} + 2t + 1, y = t^{2} - 2t + 1, t \in [-1, 1]

Possible Answers:

\displaystyle y = x - 2

\displaystyle y = x - 4 - 4\sqrt{x}

\displaystyle y = x + 4 - 4\sqrt{x}

\displaystyle y = x+2

\displaystyle y = x + 4 + 4\sqrt{x}

Correct answer:

\displaystyle y = x + 4 - 4\sqrt{x}

Explanation:

\displaystyle x = t^{2} + 2t + 1

\displaystyle x = \left ( t + 1\right )^{2}

\displaystyle \pm \sqrt{x} = t + 1

So 

\displaystyle \sqrt{x} = t + 1 or \displaystyle -\sqrt{x} = t + 1

We are restricting \displaystyle t to values on \displaystyle \left [ -1, 1\right ], so \displaystyle t + 1 is nonnegative; we choose 

\displaystyle \sqrt{x} = t + 1.

Also,

\displaystyle y = t^{2} - 2t + 1

\displaystyle y= \left ( t - 1\right )^{2}

\displaystyle \sqrt{y} = \pm \left ( t - 1\right )

So 

\displaystyle \sqrt{y} = t- 1 or \displaystyle -\sqrt{y} = t- 1

We are restricting \displaystyle t to values on \displaystyle \left [ -1, 1\right ], so \displaystyle t - 1 is nonpositive; we choose

\displaystyle -\sqrt{y} = t- 1

or equivalently,

\displaystyle \sqrt{y} = -t+ 1

to make \displaystyle t - 1 nonpositive.

 

Then,

\displaystyle \sqrt{x}+ \sqrt{y} = (t + 1) + (-t + 1)

and 

\displaystyle \sqrt{x}+ \sqrt{y} = 2

\displaystyle \sqrt{y} = 2 - \sqrt{x}

\displaystyle y =\left ( 2 - \sqrt{x} \right )^2

\displaystyle y = 4 - 4\sqrt{x} + \left (\sqrt{x} \right )^{2}

\displaystyle y = x + 4 - 4\sqrt{x}

Example Question #6 : Parametric, Polar, And Vector

Rewrite as a Cartesian equation:

\displaystyle x =10^ {t}, y = \sinh t, t \in (0,\infty )

Possible Answers:

\displaystyle y = \frac{ x ^{2 \log e} }{2 x ^{\log e}}

\displaystyle y = \frac{ x ^{2 \log e} -1}{2 x ^{\log e}}

\displaystyle y = \frac{ 2x ^{2 \log e} -1}{2 x ^{\log e}}

\displaystyle y = \frac{ x ^{2 \log e} +1}{2 x ^{\log e}}

\displaystyle y = \frac{ x ^{2 \log e} -1}{ x ^{2 \log e} + 1}

Correct answer:

\displaystyle y = \frac{ x ^{2 \log e} -1}{2 x ^{\log e}}

Explanation:

\displaystyle y = \sinh t = \frac{e ^{2t} -1}{2e ^{t}} = \frac{\left (e ^{ t} \right) ^{2} -1}{2e ^{t}}

\displaystyle e^{t} = 10 ^{\log e \cdot t} =\left ( 10 ^{ t} \right )^{\log e} = x ^{\log e}, so

\displaystyle y = \frac{\left ( x ^{\log e} \right) ^{2} -1}{2 x ^{\log e}}= \frac{ x ^{2 \log e} -1}{2 x ^{\log e}}

This makes the Cartesian equation

\displaystyle y = \frac{ x ^{2 \log e} -1}{2 x ^{\log e}}.

Example Question #2 : Parametric, Polar, And Vector Functions

If \displaystyle x=3+t and \displaystyle y=4t+7, what is \displaystyle y in terms of \displaystyle x (rectangular form)?

Possible Answers:

\displaystyle y=4x-2

\displaystyle y=4x-5

\displaystyle y=4x-3

\displaystyle y=4x-7

\displaystyle y=4x-12

Correct answer:

\displaystyle y=4x-5

Explanation:

Given \displaystyle x=3+t and  \displaystyle y=4t+7, we can find \displaystyle y in terms of \displaystyle x by isolating \displaystyle t in both equations:

 

\displaystyle x=3+t\rightarrow t=x-3

\displaystyle y=4t+7\rightarrow t=\frac{y-7}{4}

Since both of these transformations equal \displaystyle t, we can set them equal to each other:

\displaystyle \frac{y-7}{4}=x-3

\displaystyle y-7=4(x-3)

\displaystyle y-7=4x-12

\displaystyle y=4x-5

Example Question #1 : Functions, Graphs, And Limits

Given \displaystyle x=t+10 and \displaystyle y=2t-9, what is the arc length between \displaystyle 0\leqt\leq t\leq4?

Possible Answers:

\displaystyle 5\sqrt{5}

\displaystyle 3\sqrt{5}

\displaystyle 4\sqrt{5}

\displaystyle \sqrt{5}

\displaystyle 2\sqrt{5}

Correct answer:

\displaystyle 4\sqrt{5}

Explanation:

In order to find the arc length, we must use the arc length formula for parametric curves:

\displaystyle L=\int_{a}^{b}\sqrt{\left(\frac{dx}{dt}\right)^{2}+\left(\frac{dy}{dt}\right)^{2}}dt.

Given  \displaystyle x=t+10 and \displaystyle y=2t-9, we can use using the Power Rule

 for all , to derive 

\displaystyle \frac{dx}{dt}=(1)t^{1-1}+(0)10=1 and 

\displaystyle \frac{dy}{dt}=(1)2t^{1-1}-(0)9=2.

Plugging these values and our boundary values for  into the arc length equation, we get:

\displaystyle L=\int_{0}^{4}\sqrt{(1)^{2}+(2)^{2}}dt

\displaystyle L=\int_{0}^{4}(\sqrt{1+4})dt

\displaystyle L=\int_{0}^{4}(\sqrt{5})dt

Now, using the Power Rule for Integrals

 for all ,

we can determine that:

\displaystyle L=[t\sqrt{5}]_{0}^{4}\textrm{}dt

\displaystyle L=(4)\sqrt{5}-(0)\sqrt{5}

\displaystyle L=4\sqrt{5}

Example Question #4 : Parametric, Polar, And Vector Functions

Given \displaystyle x=4t-5 and \displaystyle y=6t+2, what is the length of the arc from \displaystyle 0\leq t\leq2?

Possible Answers:

\displaystyle 3\sqrt{13}

\displaystyle 5\sqrt{13}

\displaystyle 7\sqrt{13}

\displaystyle 4\sqrt{13}

\displaystyle 6\sqrt{13}

Correct answer:

\displaystyle 4\sqrt{13}

Explanation:

In order to find the arc length, we must use the arc length formula for parametric curves:

\displaystyle L=\int_{a}^{b}\sqrt{\left(\frac{dx}{dt}\right)^{2}+\left(\frac{dy}{dt}\right)^{2}}dt.

Given \displaystyle x=4t-5 and \displaystyle y=6t+2, we can use using the Power Rule

for all  , to derive

\displaystyle \frac{dx}{dt}=(1)4t^{1-1}-(0)5=4 and

\displaystyle \frac{dy}{dt}=(1)6t^{1-1}+(0)2=6 .

Plugging these values and our boundary values for into the arc length equation, we get:

\displaystyle L=\int_{0}^{2}(\sqrt{(4)^{2}+(6)^{2}}dt

\displaystyle L=\int_{0}^{2}(\sqrt{16+36})dt

\displaystyle L=\int_{0}^{2}(\sqrt{52})dt

\displaystyle L=\int_{0}^{2}(\sqrt{4\times13})dt

\displaystyle L=\int_{0}^{2}(2\sqrt{13})dt

Now, using the Power Rule for Integrals

for all ,

we can determine that:

\displaystyle L=[2t\sqrt{13}]_{0}^{2}\textrm{}

\displaystyle L=2(2)\sqrt{13}-2(0)\sqrt{13}

\displaystyle L=4\sqrt{13}

Example Question #2 : Functions, Graphs, And Limits

Find the length of the following parametric curve 

\displaystyle x=e^{t}cos(t),   \displaystyle y=e^{t}sin(t),   \displaystyle 0\leq t \leq 2 \pi.

Possible Answers:

\displaystyle sin(t)+cos(t)

\displaystyle \sqrt{2}\left ( e^{2 \pi}-1}\right )

\displaystyle e^{2 \pi}

\displaystyle 1

\displaystyle e^{t}cos(t)

Correct answer:

\displaystyle \sqrt{2}\left ( e^{2 \pi}-1}\right )

Explanation:

The length of a curve is found using the equation \displaystyle L=\int_{\alpha }^{\beta }\sqrt{\left ( \frac{dx}{dt} \right )^{2}+\left ( \frac{dy}{dt} \right )^{2}}dt

We use the product rule,

\displaystyle \frac{d}{dt}(a*b)=a\frac{db}{dt}+b\frac{da}{dt}, when \displaystyle a and \displaystyle b are functions of \displaystyle t,

the trigonometric rule,

\displaystyle \frac{d}{dt}[cos(t)]=-sin(t) and  \displaystyle \frac{d}{dt}[sin(t)]=cos(t)

and exponential rule,

\displaystyle \frac{d}{dt}[e^{t}]=e^{t} to find \displaystyle \frac{dx}{dt} and \displaystyle \frac{dy}{dt}

In this case

\displaystyle x=e^{t}cos(t),   \displaystyle y=e^{t}sin(t)

\displaystyle \frac{dx}{dt}=\frac{d}{dt}e^{t}cos(t)=e^{t}\frac{d}{dt}cos(t)+cos(t)\frac{d}{dt}e^{t}

\displaystyle =e^{t}*(-sin(t))+cos(t)*e^{t}=e^{t}cos(t)-e^{t}sin(t)

 

\displaystyle \frac{dy}{dt}=\frac{d}{dt}e^{t}sin(t)=e^{t}\frac{d}{dt}sin(t)+sin(t)\frac{d}{dt}e^{t}

\displaystyle =e^{t}cos(t)+sin(t)*e^{t}=e^{t}cos(t)+e^{t}sin(t)

\displaystyle \alpha=0, \beta=2\pi

The length of this curve is

\displaystyle L=\int_{0}^{2\pi }\sqrt{\left (e^{t}cos(t)-e^{t}sin(t)\right )^{2}+\left (e^{t}cos(t)+e^{t}sin(t)\right )^{2}}dt

Using the identity \displaystyle (a\pm b)^{2}=a^{2}\pm2ab+b^{2}

\displaystyle L=\int_{0}^{2\pi }\sqrt{\binom{\left (e^{2t}cos^{2}(t)-2e^{t}cos(t)e^{t}sin(t)+e^{2t}sin^{2}(t)\right )}{\left +(e^{2t}cos^{2}(t)+2e^{t}cos(t)e^{t}sin(t)+e^{2t}sin^{2}(t)\right)}dt}

\displaystyle =\int_{0}^{2\pi }\sqrt{(2e^{2t}cos^{2}(t)+2e^{2t}sin^{2}(t))dt}

\displaystyle =\int_{0}^{2\pi }\sqrt{2e^{2t}(cos^{2}(t)+sin^{2}(t))dt}

Using the identity \displaystyle \sqrt{a*b}=\sqrt{a}\sqrt{b}

\displaystyle L=\int_{0}^{2\pi }\sqrt{2e^{2t}} \sqrt{cos^{2}(t)+sin^{2}(t)dt}

Using the trigonometric identity \displaystyle sin^{2}(at)+cos^{2}(at)=1 where \displaystyle a is a constant and \displaystyle e^{2t}=(e^{t})^2

\displaystyle =\int_{0}^{2\pi }\sqrt{2}e^{t}dt}=\sqrt{2}\int_{0}^{2\pi }e^{t}dt}

Using the exponential rule, \displaystyle \int e^{t}dt}=e^{t}

\displaystyle \sqrt{2}\int_{0}^{2\pi }e^{t}dt}=\sqrt{2}e^{t}|_{0}^{2\pi}=\sqrt{2}\left ( e^{2 \pi}-e^{0}}\right )

Using the exponential rule, \displaystyle e^{0}=1, gives us the final solution

\displaystyle L=\sqrt{2}\left ( e^{2 \pi}-1}\right )

 

 

Example Question #3 : Functions, Graphs, And Limits

Find dy/dx at the point corresponding to the given value of the parameter without eliminating the parameter:

\displaystyle x=5\sec(t),y=3\tan(t), t=\frac{\pi}{6}

Possible Answers:

\displaystyle 10\sqrt3

\displaystyle \frac{6}{5}

\displaystyle \frac{5}{6}

\displaystyle \frac{3}{10}

\displaystyle \frac{10}{3}

Correct answer:

\displaystyle \frac{6}{5}

Explanation:

The formula for dy/dx for parametric equations is given as:

\displaystyle \frac{dy}{dx}=\frac{\frac{dy}{dt}}{\frac{dx}{dt}}

From the problem statement:

\displaystyle \frac{dy}{dt}=3\sec^2(t),\frac{dx}{dt}=5\sec(t)\tan(t)

If we plug these into the above equation we end up with:

\displaystyle \frac{dy}{dx}=\frac{3\sec^2(t)}{5\sec(t)\tan(t)}=\frac{3\sec(t)}{5\tan(t)}=\frac{3\frac{1}{cos(t)}}{5\frac{sin(t)}{cos(t)}}

\displaystyle \frac{dy}{dx}=\frac{3}{5}\frac{1}{\cos(t)}\frac{\cos(t)}{\sin(t)}=\frac{3}{5}\frac{1}{\sin(t)}

If we plug in our given value for t, we end up with:

\displaystyle \frac{3}{5}\frac{1}{\sin(\frac{\pi}{6})}=\frac{3}{5}\frac{1}{\frac{1}{2}}=\frac{3}{5}*2=\frac{6}{5}

This is one of the answer choices.

Example Question #201 : Ap Calculus Bc

Draw the graph of \displaystyle r=sin\theta from \displaystyle 0\leq \theta \leq2\pi.

Possible Answers:

R_sinx

R_sin2x

R_sinx_1

R_cosx

Faker_cosx

Correct answer:

R_sinx

Explanation:

Between \displaystyle 0 and \displaystyle \frac{\pi }{2}, the radius approaches \displaystyle 1 from \displaystyle 0.

From \displaystyle \frac{\pi }{2} to \displaystyle \pi the radius goes from \displaystyle 1 to \displaystyle 0.

Between \displaystyle \pi and \displaystyle \frac{3\pi }{2}, the curve is redrawn in the opposite quadrant, the first quadrant as the radius approaches \displaystyle -1.

From \displaystyle \frac{3\pi }{2} and \displaystyle 2\pi, the curve is redrawn in the second quadrant as the radius approaches \displaystyle 0 from \displaystyle -1.   

Example Question #5 : Parametric, Polar, And Vector Functions

Draw the graph of \displaystyle r=sin(2\theta ) where \displaystyle 0\leq \theta \leq2\pi.

Possible Answers:

R_sinx

R_sin2x

R_cos2x

R_sinx_1

Faker_cosx

Correct answer:

R_sin2x

Explanation:

Because this function has a period of \displaystyle \pi, the amplitude of the graph \displaystyle y=sin(2x)  appear at a reference angle of \displaystyle \frac{\pi }{4} (angles halfway between the angles of the axes).  

Between \displaystyle 0 and \displaystyle \frac{\pi }{4} the radius approaches 1 from 0.

Between \displaystyle \frac{\pi }{4} and \displaystyle \frac{\pi }{2}, the radius approaches 0 from 1.

From \displaystyle \frac{\pi }{2} to \displaystyle \frac{3\pi }{4} the radius approaches -1 from 0 and is drawn in the opposite quadrant, the fourth quadrant because it has a negative radius.

Between \displaystyle \frac{3\pi }{4} and \displaystyle \pi, the radius approaches 0 from -1, and is also drawn in the fourth quadrant.

From \displaystyle \pi and \displaystyle \frac{5\pi }{4}, the radius approaches 1 from 0. Between \displaystyle \frac{5\pi }{4} and \displaystyle \frac{3\pi }{2}, the radius approaches 0 from 1.

Then between \displaystyle \frac{3\pi }{2} and \displaystyle \frac{7\pi }{4} the radius approaches -1 from 0. Because it is a negative radius, it is drawn in the opposite quadrant, the second quadrant. Likewise, as the radius approaches 0 from -1. Between \displaystyle \frac{7\pi }{4} and \displaystyle 2\pi, the curve is drawn in the second quadrant.                  

Example Question #6 : Parametric, Polar, And Vector Functions

Graph \displaystyle r^2=cos(2\theta ) where \displaystyle 0\leq \theta \leq2\pi.

Possible Answers:

R_cos2x

R_sin2x

R_cosx

R2_sin2x

R2_cos2x

Correct answer:

R2_cos2x

Explanation:

Taking the graph of \displaystyle y=cos(2x), we only want the areas in the positive first quadrant because the radius is squared and cannot be negative.

This leaves us with the areas from \displaystyle 0 to \displaystyle \frac{\pi }{4}\displaystyle \frac{3\pi }{4} to \displaystyle \frac{5\pi }{4}, and \displaystyle \frac{7\pi }{4} to \displaystyle 2\pi.

Then, when we take the square root of the radius, we get both a positive and negative answer with a maximum and minimum radius of \displaystyle \pm 1.

To draw the graph, the radius is 1 at \displaystyle 0 and traces to 0 at \displaystyle \frac{\pi }{4}. As well, the negative part of the radius starts at -1 and traces to zero in the opposite quadrant, the third quadrant.

From \displaystyle \frac{3\pi }{4} to \displaystyle \pi, the curves are traced from 0 to 1 and 0 to -1 in the fourth quadrant. Following this pattern, the graph is redrawn again from the areas included in \displaystyle \pi to \displaystyle 2\pi.    

Learning Tools by Varsity Tutors