AP Calculus BC : Radius and Interval of Convergence of Power Series

Study concepts, example questions & explanations for AP Calculus BC

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Radius And Interval Of Convergence Of Power Series

Which of following intervals of convergence cannot exist?

Possible Answers:

For any \(\displaystyle \small \epsilon>0\), the interval \(\displaystyle \small [a-\epsilon,a+\epsilon]\) for some \(\displaystyle \small a\in\mathbb{R}\)

\(\displaystyle \small [2,10000]\)

For any \(\displaystyle \small q,p\) such that \(\displaystyle \small q \leq p\), the interval \(\displaystyle [q,p]\)

\(\displaystyle \small [2,\infty)\)

Correct answer:

\(\displaystyle \small [2,\infty)\)

Explanation:

\(\displaystyle \small [2,\infty)\) cannot be an interval of convergence because a theorem states that a radius has to be either nonzero and finite, or infinite (which would imply that it has interval of convergence \(\displaystyle \small (-\infty,\infty)\)). Thus, \(\displaystyle \small [2,\infty)\) can never be an interval of convergence.

Example Question #1 : Alternating Series

Find the interval of convergence of \(\displaystyle x\) for the series \(\displaystyle \sum_{n=1}^{\infty }\frac{3^nx^n}{n!}\).

Possible Answers:

\(\displaystyle \left ( \frac{-1}{3}, \frac{1}{3} \right )\)

\(\displaystyle \left ( -\infty , \infty \right )\)

\(\displaystyle (-1,0)\)

\(\displaystyle \left [ \frac{-1}{3}, \frac{1}{3} \right ]\)

\(\displaystyle \left ( -3, 3\right )\)

Correct answer:

\(\displaystyle \left ( -\infty , \infty \right )\)

Explanation:

Using the root test, 

\(\displaystyle \lim_{n\rightarrow \infty }\left | \frac{a_{n+1}}{a_n} \right |=\lim_{n\rightarrow \infty }\left |\frac{3^{n+1} x^{n+1}}{(n+1)!} \cdot \frac{n!}{3^nx^n} \right |=\left | 3x\right |\lim_{n\rightarrow \infty }\left | \frac{1}{n+1} \right |=0\)

Because 0 is always less than 1, the root test shows that the series converges for any value of x. 

Therefore, the interval of convergence is:

\(\displaystyle (-\infty, \infty)\)

Example Question #2 : Radius And Interval Of Convergence Of Power Series

Find the interval of convergence for \(\displaystyle x\) of the Taylor Series \(\displaystyle \sum_{n=0}^{\infty }n!(x-5)^n\).

Possible Answers:

\(\displaystyle x=0\)

\(\displaystyle (-\infty, \infty)\)

\(\displaystyle \left ( -5, 5\right )\)

\(\displaystyle x=5\)

\(\displaystyle \left ( \frac{-1}{5}, \frac{1}{5} \right )\)

Correct answer:

\(\displaystyle x=5\)

Explanation:

Using the root test

\(\displaystyle \lim_{n\rightarrow \infty }\left | \frac{a_{n+1}}{a_n} \right |=\lim_{n\rightarrow \infty }\left |\frac{(n+1)!(x-5)^{n+1}}{n!(x-5)^n} \right |=\left |x-5 \right |\lim_{n\rightarrow \infty }\left | n+1 \right |\) 

and

\(\displaystyle \lim_{n\rightarrow \infty }\left | n+1 \right |=\infty\). T

herefore, the series only converges when it is equal to zero.

This occurs when x=5.

Learning Tools by Varsity Tutors