Basic Arithmetic : Changing a Decimal to a Percent

Study concepts, example questions & explanations for Basic Arithmetic

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Changing A Decimal To A Percent

Convert \displaystyle 3.15 to a percent.

Possible Answers:

\displaystyle 31.5\%

\displaystyle 0.315\%

\displaystyle 3.15\%

\displaystyle 315\%

Correct answer:

\displaystyle 315\%

Explanation:

To convert a decimal into percent, multiply the decimal by 100 and then add a "%" sign.

\displaystyle 3.15\times100=315

Add a % sign.

\displaystyle 315\%

Example Question #2 : Changing A Decimal To A Percent

What is \displaystyle 0.49 as a percent?

Possible Answers:

\displaystyle 0.49\%

\displaystyle 4.9\%

\displaystyle 490\%

\displaystyle 49\%

Correct answer:

\displaystyle 49\%

Explanation:

To change a demical to a percent, multiply the decimal by 100 and then add the percent sign.

\displaystyle 0.49\times100 = 49

Add the percent sign.

 

\displaystyle 49\rightarrow49\%

Example Question #101 : Basic Arithmetic

What is \displaystyle 0.87 as a percent?

Possible Answers:

\displaystyle 870\%

\displaystyle 8.7\%

\displaystyle 87\%

\displaystyle 0.87\%

Correct answer:

\displaystyle 87\%

Explanation:

To change a decimal into a percent, start by multiplying the decimal by 100.

\displaystyle 0.87\times100=87

Then, add a percent sign to the end of that number.

\displaystyle 87\rightarrow87\%

Example Question #2 : Changing View

What is \displaystyle 0.71 as a percent?

Possible Answers:

\displaystyle 7.1\%

\displaystyle 710\%

\displaystyle 0.71\%

\displaystyle 71\%

Correct answer:

\displaystyle 71\%

Explanation:

To change a decimal into a percent, start by multiplying the decimal by 100.

\displaystyle 0.71\times100=71

Then add a percent sign to the end of the number.

\displaystyle 71\rightarrow71\%

Example Question #3 : Changing A Decimal To A Percent

What is \displaystyle 0.54 as a percent?

Possible Answers:

\displaystyle 5.4\%

\displaystyle 0.54\%

\displaystyle 540\%

\displaystyle 54\%

Correct answer:

\displaystyle 54\%

Explanation:

To change a decimal into a percent, multiply the decimal by 100 then add the percent sign.

\displaystyle 0.54\times100=54

\displaystyle 54\rightarrow 54\%

Example Question #4 : Changing A Decimal To A Percent

Change \displaystyle 0.99 into a percent.

Possible Answers:

\displaystyle 0.99\%

\displaystyle 99\%

\displaystyle 990\%

\displaystyle 9.9\%

Correct answer:

\displaystyle 99\%

Explanation:

To change a decimal into a percent, multiply the decimal by \displaystyle 100 then add a percent sign at the end of that number.

\displaystyle 0.99\times100=99

\displaystyle 99\rightarrow99\%

Example Question #4 : Changing A Decimal To A Percent

What is \displaystyle 0.95254 expressed as a percentage rounded to the nearest tenth?

Possible Answers:

\displaystyle \small \small 0.95\%

\displaystyle \small 100\%

\displaystyle \small 95.3\%

\displaystyle \small \small 95\%

\displaystyle \small 95.25\%

Correct answer:

\displaystyle \small 95.3\%

Explanation:

Percents are numbers expressing parts of \displaystyle \small 100\displaystyle \small \small 1\% means \displaystyle \small 1 part of \displaystyle \small 100, or \displaystyle \small \frac{1}{100}

 

The simplest way to convert a decimal to a percentage is to move the decimal place over two places to the right. We move the decimal point to after the hundredths place because we are rewriting the decimal as a portion of \displaystyle \small 100. Therefore:

\displaystyle \small 0.9525=95.25\%

Now, we need to round the percentage to the nearest tenth. The number after the tenths place is a five, so we need to round up:

\displaystyle \small 95.25\%\Rightarrow95.3\%

\displaystyle \small 95.3\% is therefore our final answer.

Example Question #8 : Changing View

What is \displaystyle \small 2.420398 expressed as a percentage rounded to the nearest hundredth?

Possible Answers:

\displaystyle \small 242\%

\displaystyle \small 242.04\%

\displaystyle \small 24.20\%

\displaystyle \small 0.02\%

\displaystyle \small 2.42\%

Correct answer:

\displaystyle \small 242.04\%

Explanation:

Percents are numbers expressing parts of \displaystyle \small 100\displaystyle \small \small 84\% is the same thing as saying \displaystyle \small 84 parts of \displaystyle \small 100 or \displaystyle \small \frac{84}{100}

 

The simplest way to convert a decimal to a percentage is to move the decimal place over two places to the right. We move the decimal point to after the hundredths place because we are rewriting the decimal as a portion of \displaystyle \small 100. Therefore:

\displaystyle \small 2.420398=242.0398\%

In everyday usage, percents usually are between \displaystyle \small \small 0\% and \displaystyle \small 100\%. However, when a number is greater than \displaystyle \small 1, it's corresponding percentage is going to be greater than \displaystyle \small 100\%. The next step of this problem is to round the percentage we have to the nearest hundredth. The number in the thousandths place is \displaystyle \small 9, therefore, we're going to round up:

\displaystyle \small 242.0398\%\Rightarrow242.04\%

\displaystyle \small 242.04\% is therefore our final answer.

Learning Tools by Varsity Tutors