Calculus 1 : Meaning of Functions

Study concepts, example questions & explanations for Calculus 1

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Meaning Of Functions

Take the limit

\lim_{x \to -2} \frac{x+\sqrt{x+6}}{x+2}\(\displaystyle \lim_{x \to -2} \frac{x+\sqrt{x+6}}{x+2}\)

Possible Answers:

\(\displaystyle 2\)

\(\displaystyle \frac{2}{3}\)

\(\displaystyle \frac{8}{3}\)

\(\displaystyle 4\)

\(\displaystyle \frac{5}{4}\)

Correct answer:

\(\displaystyle \frac{5}{4}\)

Explanation:

First, multiply the numerator and denominator by x-\sqrt{x+6}\(\displaystyle x-\sqrt{x+6}\) and it turns into

\lim_{x \to -2} \frac{(x+\sqrt{x+6})}{(x+2)}\frac{(x-\sqrt{x+6})}{(x-\sqrt{x+6})}\(\displaystyle \lim_{x \to -2} \frac{(x+\sqrt{x+6})}{(x+2)}\frac{(x-\sqrt{x+6})}{(x-\sqrt{x+6})}\)

\lim_{x \to -2} \frac{x^2-x-6}{(x+2)(x-\sqrt{x+6})}\(\displaystyle \lim_{x \to -2} \frac{x^2-x-6}{(x+2)(x-\sqrt{x+6})}\)

Factor the numerator and then cancel out the 'x+2'

\lim_{x \to -2} \frac{(x+2)(x-3)}{(x+2)(x-\sqrt{x+6})}\(\displaystyle \lim_{x \to -2} \frac{(x+2)(x-3)}{(x+2)(x-\sqrt{x+6})}\)

\lim_{x \to -2} \frac{(x-3)}{(x-\sqrt{x+6})}\(\displaystyle \lim_{x \to -2} \frac{(x-3)}{(x-\sqrt{x+6})}\)

After taking the limit, the answer is \(\displaystyle \frac{5}{4}\)

Example Question #2 : Meaning Of Functions

If this limit is true, then what is the value of 'a'?

\lim_{x \to 3} \frac{x^4-a}{x^2-\sqrt{a}}=18\(\displaystyle \lim_{x \to 3} \frac{x^4-a}{x^2-\sqrt{a}}=18\)

Possible Answers:

\(\displaystyle 68\)

\(\displaystyle 32\)

\(\displaystyle 9\)

\(\displaystyle 121\)

\(\displaystyle 81\)

Correct answer:

\(\displaystyle 81\)

Explanation:

Factor the numerator

\lim_{x \to 3} \frac{(x^2-\sqrt{a})(x^2+\sqrt{a})}{x^2-\sqrt{a}}=18\(\displaystyle \lim_{x \to 3} \frac{(x^2-\sqrt{a})(x^2+\sqrt{a})}{x^2-\sqrt{a}}=18\)

Cancel the x^2-\sqrt{a}\(\displaystyle x^2-\sqrt{a}\), plug in the limit and then solve for 'a'

\lim_{x \to 3} x^2+\sqrt{a}=18\(\displaystyle \lim_{x \to 3} x^2+\sqrt{a}=18\)

3^2+\sqrt{a}=18\(\displaystyle 3^2+\sqrt{a}=18\)

a=81\(\displaystyle a=81\)

Example Question #3 : Meaning Of Functions

We have a line described as y=-\frac{1}{2}x+2\(\displaystyle y=-\frac{1}{2}x+2\). Find the minimum distance between the origin and a point on that line.

Possible Answers:

d=\sqrt{\frac{4}{5}}\(\displaystyle d=\sqrt{\frac{4}{5}}\)

1\(\displaystyle 1\)

d=\frac{4}{\sqrt{5}}\(\displaystyle d=\frac{4}{\sqrt{5}}\)

d=\frac{\sqrt{5}}{4}\(\displaystyle d=\frac{\sqrt{5}}{4}\)

\frac{16}{5}\(\displaystyle \frac{16}{5}\)

Correct answer:

d=\frac{4}{\sqrt{5}}\(\displaystyle d=\frac{4}{\sqrt{5}}\)

Explanation:

We have the origin \(\displaystyle (0,0)\) and a point \(\displaystyle (x,y)\) located on the line.  That point represents the minimum distance to the orgin.  Apply the distance formula to these two points,

d=\sqrt{(x-0)^2+(y-0)^2}=\sqrt{x^2+y^2}\(\displaystyle d=\sqrt{(x-0)^2+(y-0)^2}=\sqrt{x^2+y^2}\)

Plug in the line equation, take the derivative, set it equal to zero, and solve for x.

d=\sqrt{x^2+(-\frac{1}{2}x+2)^2}=\sqrt{\frac{5}{4}x^2-2x+4}\(\displaystyle d=\sqrt{x^2+(-\frac{1}{2}x+2)^2}=\sqrt{\frac{5}{4}x^2-2x+4}\){d}'=\frac{\frac{5}{2}x-2}{2\sqrt{\frac{5}{4}x^2-2x+4}}=0\(\displaystyle {d}'=\frac{\frac{5}{2}x-2}{2\sqrt{\frac{5}{4}x^2-2x+4}}=0\)

x=\frac{4}{5}\(\displaystyle x=\frac{4}{5}\)

Use this \(\displaystyle x\) value to find \(\displaystyle y\)

y=-\frac{1}{2}\left ( \frac{4}{5} \right )+2=\frac{8}{5}\(\displaystyle y=-\frac{1}{2}\left ( \frac{4}{5} \right )+2=\frac{8}{5}\)

So we have the point (\frac{4}{5},\frac{8}{5})\(\displaystyle (\frac{4}{5},\frac{8}{5})\), which is closest to the origin. We can now find its distance from that origin.

d=\sqrt{\left (\frac{4}{5} \right )^2+\left ( \frac{8}{5} \right )^2}\(\displaystyle d=\sqrt{\left (\frac{4}{5} \right )^2+\left ( \frac{8}{5} \right )^2}\)

d=\sqrt{\frac{16}{5}}=\frac{4}{\sqrt{5}}\(\displaystyle d=\sqrt{\frac{16}{5}}=\frac{4}{\sqrt{5}}\)

Example Question #4 : Meaning Of Functions

We have the following,

\int_{-5}^{5}\frac{x^2+(6+c)x+6c}{x+6}dx=-60\(\displaystyle \int_{-5}^{5}\frac{x^2+(6+c)x+6c}{x+6}dx=-60\)

What is c?

Possible Answers:

\(\displaystyle 8\)

\(\displaystyle -6\)

\(\displaystyle -5\)

\(\displaystyle 2\)

\(\displaystyle 6\)

Correct answer:

\(\displaystyle -6\)

Explanation:

First, factor the numerator of the integrand.

\int_{-5}^{5}\frac{(x+6)(x+c)}{x+6}dx\(\displaystyle \int_{-5}^{5}\frac{(x+6)(x+c)}{x+6}dx\)

Cancel out \(\displaystyle x+6\)

\int_{-5}^{5}\frac{(x+6)(x+c)}{x+6}dx=-60\(\displaystyle \int_{-5}^{5}\frac{(x+6)(x+c)}{x+6}dx=-60\)

\int_{-5}^{5}(x+c)dx=-60\(\displaystyle \int_{-5}^{5}(x+c)dx=-60\)

Perform the integral and then solve for \(\displaystyle c\)

\frac{1}{2}(5)^2+5c-\left ( \frac{1}{2}(-5)^2+(-5)c \right )=-60\(\displaystyle \frac{1}{2}(5)^2+5c-\left ( \frac{1}{2}(-5)^2+(-5)c \right )=-60\)

10c=-60\(\displaystyle 10c=-60\)

c=-6\(\displaystyle c=-6\)

Example Question #5 : Meaning Of Functions

If \(\displaystyle h(x)=\int_{0}^{x}sin(u)du\), find \(\displaystyle h^{'}(x)\)

Possible Answers:

\(\displaystyle h^{'}(x) = sin(x)\)

\(\displaystyle h^{'}(x) = -cos(x)\)

\(\displaystyle h^{'}(x) = cos(x)\)

\(\displaystyle h^{'}(x) = sin(0.5x^2)\)

Correct answer:

\(\displaystyle h^{'}(x) = sin(x)\)

Explanation:

Taking the derivative of an integral yields the original function, but because we have a different variable in the integration limits, the variable switches

Example Question #5 : Meaning Of Functions

Evaluate \(\displaystyle \int(14x^7 +\frac{x^6}{(2)}+sin(x)-csc^2(x))dx\)

Possible Answers:

\(\displaystyle \frac{14x^8}{8}+\frac{x^7}{14}-cos(x)+cot(x)+C\)

\(\displaystyle \frac{14x^8}{8}+\frac{x^7}{14}+cos(x)-cot(x)+C\)

\(\displaystyle \frac{14x^6}{6}+\frac{x^5}{14}+cos(x)-cot(x)+C\)

\(\displaystyle 98x^6+3x^5+cos(x)+cot(x)\)

Correct answer:

\(\displaystyle \frac{14x^8}{8}+\frac{x^7}{14}-cos(x)+cot(x)+C\)

Explanation:

using integration identities: \(\displaystyle \int{x^n dx}= \frac{x^{n+1}}{n+1} and \int{sin(x) dx}= - cos(x) and \int{csc^2(x) dx}= -cot (x)\) 

Example Question #1 : How To Find The Meaning Of Functions

Evaluate

\(\displaystyle \int_{1}^{4}(4x^2+2x-8)dx\)

Possible Answers:

\(\displaystyle 66.33\)

\(\displaystyle 75\)

\(\displaystyle 55.33\)

\(\displaystyle 71\)

Correct answer:

\(\displaystyle 75\)

Explanation:

\(\displaystyle \int_{1}^{4}(4x^2+2x-8)dx\)

\(\displaystyle \frac{4x^3}{3} + \frac{2x^2}{2} -8x\)

\(\displaystyle \frac{4x^3}{3} + x^2 -8x\)         evaluate at \(\displaystyle \left [ 1,4 \right ]\)

\(\displaystyle \left(\frac{4(4)^3}{3} + (4)^2 -8(4)\right) - \left(\frac{4(1)^3}{3} + (1)^2 -8(1)\right)\)

\(\displaystyle =75\)

Example Question #6 : Meaning Of Functions

Evaluate \(\displaystyle \int_{0}^{3}(2x(x^2+1)^3)dx\)

Possible Answers:

\(\displaystyle \frac{10000}{4}\)

\(\displaystyle \frac{81}{4}\)

\(\displaystyle \frac{10001}{4}\)

\(\displaystyle \frac{9999}{4}\)

Correct answer:

\(\displaystyle \frac{9999}{4}\)

Explanation:

\(\displaystyle \int_{0}^{3}(2x(x^2+1)^3)dx\)

Intergation by substitution

\(\displaystyle u= x^2+1\)

\(\displaystyle du=2xdx\)

new endpoints:

\(\displaystyle u=(3)^2+1=10\)

\(\displaystyle u=(0)^2+1=1\)

New Equation:

\(\displaystyle \int_{1}^{10}(u^3)du\)

\(\displaystyle \frac{u^4}{4}\) at \(\displaystyle \left [ 1,10 \right ]\)

\(\displaystyle = \frac{(10)^4}{4} - \frac{(1)^4}{4}\)

\(\displaystyle = \frac{(10000)}{4} - \frac{(1)}{4}\)

\(\displaystyle = \frac{9999}{4}\)

Example Question #4 : How To Find The Meaning Of Functions

What is \(\displaystyle \lim_{x \to 0^+} ~~x \cdot \ln(x)\) ?

Possible Answers:

\(\displaystyle -\infty\)

-1

undefined

1

0

Correct answer:

0

Explanation:

The relationship between \(\displaystyle ln(x)\) and x is an exponential relationship; \(\displaystyle x\) is going to \(\displaystyle 0\) exponentially faster than \(\displaystyle ln(x)\) is going to \(\displaystyle -\infty\) . One way to prove this is to write \(\displaystyle x = 1/(1/x)\) and use L'Hôpital's rule:

\(\displaystyle \lim_{x \to 0^+} \frac{\ln x}{1/x} = \lim_{x \to 0^+} \frac{\ln'x}{(1/x)'} = \lim_{x \to 0^+} \frac{1/x}{-1/x^2} = \lim_{x \to 0^+} \frac{-x^2}{x} = -0 = 0\)

 

 

Example Question #4 : How To Find The Meaning Of Functions

Where is \(\displaystyle \frac{4x^3 - 21 x + 10}{x^2 - 5x + 6}\) discontinuous? Are those discontinuities removable?

Possible Answers:

Removable discontinuity at \(\displaystyle x=2\), essential discontinuity at \(\displaystyle x=3\)

Removable discontinuities at \(\displaystyle x=2\) and \(\displaystyle x=3\)

Essential discontinuities at \(\displaystyle x = -2\) and \(\displaystyle x = -3\).

Removable discontinuities at \(\displaystyle x=-2\) and \(\displaystyle x=-3\).

Removable discontinuity at \(\displaystyle x=-2\), essential discontinuity at \(\displaystyle x=-3\).

Correct answer:

Removable discontinuity at \(\displaystyle x=2\), essential discontinuity at \(\displaystyle x=3\)

Explanation:

The rational function \(\displaystyle \frac{4x^3 - 21 x + 10}{x^2 - 5x + 6}\)  has a denominator with two roots, \(\displaystyle x=2\) and \(\displaystyle x=3\). These are discontinuities.

 

Factoring both top and bottom and canceling a term \(\displaystyle x-2\) tells us that this function is equal to 

\(\displaystyle \frac{(2x - 1) (2x + 5)}{x - 3}\) 

except at \(\displaystyle x=2\). This point is a removable discontinuity. \(\displaystyle x=3\) is therefore an essential discontinuity where the ratio goes to \(\displaystyle \pm \infty\).

Learning Tools by Varsity Tutors