Calculus 2 : Taylor and Maclaurin Series

Study concepts, example questions & explanations for Calculus 2

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Maclaurin Series

For which of the following functions can the Maclaurin series representation be expressed in four or fewer non-zero terms?

Possible Answers:

\displaystyle f(x)= \frac{x^{5}}{3}+2

\displaystyle f(x)= x^{2}+\sqrt{x}+1

\displaystyle f(x)=\ln|x+3|

\displaystyle f(x)=x+3\sin(x)

Correct answer:

\displaystyle f(x)= \frac{x^{5}}{3}+2

Explanation:

Recall the Maclaurin series formula:

\displaystyle f(x)=\sum_{n=0}^{\infty}\frac{f^n(0)}{n!}x^n

\displaystyle =f(0)+f'(0)x+\frac{f''(0)}{2!}x^2+\frac{f'''(0)}{3!}x^3+...

Despite being a 5th degree polynomial recall that the Maclaurin series for any polynomial is just the polynomial itself, so this function's Taylor series is identical to itself with two non-zero terms.

The only function that has four or fewer terms is \displaystyle f(x)= \frac{x^{5}}{3}+2 as its Maclaurin series is\displaystyle 2+\frac{1}{3}x^5.

Example Question #241 : Series In Calculus

Let \displaystyle f(x)=(1+\frac{x}{2})^{1/3}

Find the the first three terms of the Taylor Series for \displaystyle f centered at \displaystyle 0.

Possible Answers:

\displaystyle T_{2}(x)=1+\frac{x}{6}-\frac{x^2}{36}

\displaystyle T_{2}(x)=1+\frac{x}{6}+\frac{x^2}{36}

\displaystyle T_{3}=0+0+0

\displaystyle T_{2}=0+\frac{x}{6} -\frac{x^2}{18}

\displaystyle T_3=1+\frac{x}{3}+4x^2

Correct answer:

\displaystyle T_{2}(x)=1+\frac{x}{6}-\frac{x^2}{36}

Explanation:

Using the formula of a binomial series centered at 0:

 ,

where we replace \displaystyle x with \displaystyle \frac{x}{2} and \displaystyle k=\frac{1}{3}, we get:

  for the first 3 terms.

Then, we find the terms where,

 

Example Question #1 : Taylor And Maclaurin Series

Determine the convergence of the Taylor Series for \displaystyle f at \displaystyle x=5 where \displaystyle f(x)=\sum_{n=0}^{\infty }\frac{x^n}{n!}.

Possible Answers:

Inconclusive.

Absolutely Convergent.

Does not exist.

Divergent.

Conditionally Convergent.

Correct answer:

Absolutely Convergent.

Explanation:

By the ratio test, the series \displaystyle \sum_{n=0}^{\infty }\frac{5^n}{n!} converges absolutely: 

\displaystyle \lim_{n\rightarrow \infty }\left | \frac{a_{n+1}}{a_n} \right |=\lim_{n\rightarrow \infty }\left |\frac{5^{n+1}}{(n+1)!} \cdot \frac{n!}{5^n} \right |=\lim_{n\rightarrow \infty }\left | \frac{5}{n+1} \right |=0< 1

Example Question #1 : Radius And Interval Of Convergence Of Power Series

Find the interval of convergence for \displaystyle x of the Taylor Series \displaystyle \sum_{n=0}^{\infty }n!(x-5)^n.

Possible Answers:

\displaystyle \left ( \frac{-1}{5}, \frac{1}{5} \right )

\displaystyle \left ( -5, 5\right )

\displaystyle x=0

\displaystyle (-\infty, \infty)

\displaystyle x=5

Correct answer:

\displaystyle x=5

Explanation:

Using the root test

\displaystyle \lim_{n\rightarrow \infty }\left | \frac{a_{n+1}}{a_n} \right |=\lim_{n\rightarrow \infty }\left |\frac{(n+1)!(x-5)^{n+1}}{n!(x-5)^n} \right |=\left |x-5 \right |\lim_{n\rightarrow \infty }\left | n+1 \right | 

and

\displaystyle \lim_{n\rightarrow \infty }\left | n+1 \right |=\infty. T

herefore, the series only converges when it is equal to zero.

This occurs when x=5.

Example Question #1 : Taylor Series

Suppose that the derivative of a function, denoted \displaystyle f'(x), can be approximated by the third degree Taylor polynomial, centered at \displaystyle x=2:

\displaystyle f'(x) \approx 1 + (x-2) + \frac{4}{3} (x-2)^2 + \frac{8}{9}(x-2)^3

If \displaystyle f(2) = 7, find the third degree Taylor polynomial for \displaystyle f(x) centered at \displaystyle x = 2.

Possible Answers:

\displaystyle 7 + x + (x-2)^2 + \frac{4}{9}(x-2)^3

\displaystyle (x-2) + 2(x-2)^2 + {4}(x-2)^3

\displaystyle 7 + (x-2) + (x-2)^2 + \frac{4}{9}(x-2)^3

\displaystyle 7 + (x-2) + 2(x-2)^2 + 4(x-2)^4

\displaystyle (x-2) + (x-2)^2 + \frac{4}{9}(x-2)^3 + \frac{8}{27}(x-2)^4

Correct answer:

\displaystyle 7 + (x-2) + (x-2)^2 + \frac{4}{9}(x-2)^3

Explanation:

To get \displaystyle f(x), we need to find the antiderivative of \displaystyle f'(x) by integrating the third degree polynomial term by term.

We only want up to a third degree polynomial, so we can disregard the fourth order term:

\displaystyle f(x) = c + (x-2) + (x-2)^2 + \frac{4}{9}(x-2)^3

Since \displaystyle f(2) = 7, substitute \displaystyle c=7 for the final \displaystyle f(x).

\displaystyle f(x)=7 + (x-2) + (x-2)^2 + \frac{4}{9}(x-2)^3

 

Example Question #1 : Taylor And Maclaurin Series

Consider the following series:

\displaystyle f(t) = \sum_{ n=0}^{\infty} \left(\frac{1+t)^n}{2^n n!}\right) = 1 + \frac{1 + t}{2} + \frac{(1+t)^2}{8} + ....

What is the evaluation of this series at \displaystyle t=1?

 

 

 

 

 

Possible Answers:

\displaystyle e

\displaystyle The\ series\ diverges

\displaystyle \pi

\displaystyle cos(1)

\displaystyle sin(1)

Correct answer:

\displaystyle e

Explanation:

Recall the important McLaurin series for \displaystyle e^x:

\displaystyle e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}

The series in this question is the same, only replacing x with \displaystyle \frac{1+t}{2} .

So if we have \displaystyle f(t) = e^{\frac{1+t}{2}}, we need only evaluate at \displaystyle t=1, and thus we obtain \displaystyle e.

 

 

 

 

Example Question #2 : Maclaurin Series

Write the first three terms of the Taylor series for the following function about \displaystyle x=1:

\displaystyle f(x)=x^2+3x+2

Possible Answers:

\displaystyle 2+5(x-1)+(x-1)^2

\displaystyle 2-5(x-1)+(x-1)^2

\displaystyle 5(x-1)+(x-1)^2

\displaystyle 6+5(x-1)+(x-1)^2

Correct answer:

\displaystyle 6+5(x-1)+(x-1)^2

Explanation:

The general form for the Taylor series (of a function f(x)) about x=a is the following:

\displaystyle \sum_{n=0}^{\infty }\frac{f^{(n)}(a)}{n!}(x-a)^n.

Because we only want the first three terms, we simply plug in a=1, and then n=0, 1, and 2 for the first three terms (starting at n=0).

The hardest part, then, is finding the zeroth, first, and second derivative of the function given:

\displaystyle f^{0}(1)=f(1)=6

\displaystyle f'(1)=2(1)+3=5

\displaystyle f''(1)=2

The derivative was found using the following rules:

\displaystyle \frac{d}{dx}(x^n)=nx^{n-1}

Then, simply plug in the remaining information and write out the terms:

\displaystyle \frac{6(x-1)^0}{0!}+\frac{5(x-1)^1}{1!}+\frac{2(x-1)^2}{2!}=6+5(x-1)+(x-1)^2

Example Question #1 : Taylor And Maclaurin Series

Write out the first four terms of the Taylor series about \displaystyle a=1 for the following function:

\displaystyle f(x)=x^2+2x+1

Possible Answers:

\displaystyle 4+4(x-1)^2+(x-1)^3+0

\displaystyle 0+4+4(x-1)+(x-1)^2

\displaystyle 0+0+0+0

\displaystyle 4+4(x-1)+(x-1)^2+0

Correct answer:

\displaystyle 4+4(x-1)+(x-1)^2+0

Explanation:

The Taylor series about x=a of any function is given by the following:

\displaystyle \sum_{n=0}^{\infty }f^{(n)}(a)\frac{(x-a)^n}{n!}

So, we must find the zeroth, first, second, and third derivatives of the function (for n=0, 1, 2, and 3 which makes the first four terms):

\displaystyle f^{0}(x)=f(x)

\displaystyle f'(x)=2x+2

\displaystyle f''(x)=2

\displaystyle f'''(x)=0

The derivatives were found using the following rule:

\displaystyle \frac{d}{dx}(x^n)=nx^{n-1}

Now, evaluated at x=a=1, and plugging in the correct n where appropriate, we get the following:

\displaystyle \frac{4(x-1)^0}{0!}+\frac{4(x-1)^1}{1!}+\frac{2(x-1)^2}{2!}+\frac{0(x-1)^3}{3!}

which when simplified is equal to

\displaystyle 4+4(x-1)+(x-1)^2+0.

 

Example Question #6 : Taylor And Maclaurin Series

Find the first two terms of the Taylor series about \displaystyle a=3 for the following function:

\displaystyle f(x)=2x+5

Possible Answers:

\displaystyle 11+2(x-3)

\displaystyle 11+7(x-3)

\displaystyle 11-2(x-3)

\displaystyle \infty +2(x-3)

Correct answer:

\displaystyle 11+2(x-3)

Explanation:

The general formula for the Taylor series about x=a for a function is

\displaystyle \sum_{n=0}^{\infty }f^{(n)}(a)\frac{(x-a)^n}{n!}

First, we must find the zeroth and first derivative of the function.

The zeroth derivative of a function is just the function itself, so we only have to find the first derivative:

\displaystyle f'(x)=2

The derivative was found using the following rule:

\displaystyle \frac{d}{dx}(x^n)=nx^{n-1}

Now, write the first two terms of the sequence (n=0 and n=1):

\displaystyle \frac{[2(3)+5](x-3)^0}{0!}+\frac{2(x-3)^1}{1!}=11+2(x-3)

 

 

Example Question #3 : Taylor And Maclaurin Series

Write out the first three terms of the Taylor series for the following function about \displaystyle a=1:

\displaystyle f(x)=2e^x+2

Possible Answers:

\displaystyle 0+0+0

\displaystyle 0+2e^1(x-1)+2e^1

\displaystyle (2e^1+2)+2e^1(x-1)+e^1(x-1)^2

\displaystyle 0+(x-1)+\frac{(x-1)^2}{2}

Correct answer:

\displaystyle (2e^1+2)+2e^1(x-1)+e^1(x-1)^2

Explanation:

The general formula for the Taylor series of a given function about x=a is

\displaystyle \sum_{n=0}^{\infty }f^{(n)}(a)\frac{(x-a)^n}{n!}.

We were asked to find the first three terms, which correspond to n=0, 1, and 2. So first, we need to find the zeroth, first, and second derivative of the given function. The zeroth derivative is just the function itself.

\displaystyle f'(x)=2e^x

\displaystyle f''(x)=2e^x

The derivatives were found using the following rules:

\displaystyle \frac{\mathrm{d} }{\mathrm{d} x} e^u=e^u\frac{\mathrm{du} }{\mathrm{d} x}\displaystyle \frac{\mathrm{d} }{\mathrm{d} x}x^n=nx^{n-1}

Now use the above formula to write out the first three terms:

\displaystyle \frac{(2e^1+2)(x-1)^0}{0!}+\frac{(2e^1)(x-1)^1}{1!}+\frac{(2e^1)(x-1)^2}{2!}

Simplified, this becomes

\displaystyle (2e^1+2)+2e^1(x-1)+e^1(x-1)^2

 

 

 

Learning Tools by Varsity Tutors