Calculus AB : Integrating

Study concepts, example questions & explanations for Calculus AB

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Integrating

Let \displaystyle f(x) = \frac{1}{7}x^{7} - \frac{6}{5} x^{5} + \frac{5}{3}x^{3} - 30x.

A relative maximum of the graph of \displaystyle f  can be located at:

Possible Answers:

\displaystyle x =- \sqrt {6}

\displaystyle x=- \sqrt[4]{5}

\displaystyle x = \sqrt {6}

\displaystyle x= \sqrt[4]{5}

The graph of \displaystyle f has no relative maximum.

Correct answer:

\displaystyle x =- \sqrt {6}

Explanation:

At a relative minimum \displaystyle (c,f(c)) of the graph \displaystyle f(x), it will hold that \displaystyle f'(c) = 0 and \displaystyle f''(c) < 0

First, find \displaystyle f'(x). Using the sum rule,

\displaystyle f'(x) = \frac{\mathrm{d} }{\mathrm{d} x}\left ( \frac{1}{7}x^{7} - \frac{6}{5} x^{5} + \frac{5}{3}x^{3} - 30x \right )

\displaystyle f'(x) = \frac{\mathrm{d} }{\mathrm{d} x}\left ( \frac{1}{7}x^{7} \right )- \frac{\mathrm{d} }{\mathrm{d} x}\left ( \frac{6}{5} x^{5} \right )+ \frac{\mathrm{d} }{\mathrm{d} x}\left ( \frac{5}{3}x^{3} \right )- \frac{\mathrm{d} }{\mathrm{d} x}\left ( 30x \right )

Differentiate the individual terms using the Constant Multiple and Power Rules:

\displaystyle f'(x) = \frac{1}{7} \cdot 7 x^{6} - \frac{6}{5} \cdot 5 x^{4} + \frac{5}{3} \cdot 3 x^{2} - 30x

\displaystyle f'(x) = x^{6} - 6 x^{4} +5 x^{2} - 30

Set this equal to 0:

\displaystyle x^{6} - 6 x^{4} +5 x^{2} - 30 = 0

\displaystyle (x^{6} - 6 x^{4} )+(5 x^{2} - 30) = 0

\displaystyle x^{4} (x^{2} - 6 )+ 5 (x^{2} - 6 ) = 0

\displaystyle (x^{4}+ 5 ) (x^{2} - 6 ) = 0

Either:

\displaystyle x^{4}+5 = 0, in which case, \displaystyle x^{4} = -5; this equation has no real solutions.

\displaystyle x^{2}- 6=0 has two real solutions, \displaystyle -\sqrt {6} and \displaystyle \sqrt {6}

Now take the second derivative, again using the sum rule:

\displaystyle f'(x) = x^{6} - 6 x^{4} +5 x^{2} - 30

\displaystyle f''(x) = \frac{\mathrm{d} }{\mathrm{d} x}(x^{6} - 6 x^{4} +5 x^{2} - 30)

\displaystyle f''(x) = \frac{\mathrm{d} }{\mathrm{d} x}(x^{6} )- \frac{\mathrm{d} }{\mathrm{d} x} ( 6 x^{4} )+\frac{\mathrm{d} }{\mathrm{d} x}( 5 x^{2} )- \frac{\mathrm{d} }{\mathrm{d} x}( 30)

Differentiate the individual terms using the Constant Multiple and Power Rules:

\displaystyle f''(x) =6 x^{5} - 6 ( 4 x^{3} )+ 5( 2x )- 0

\displaystyle f''(x) =6 x^{5} -2 4 x^{3} +10x

Substitute \displaystyle \sqrt {6} for \displaystyle x:

\displaystyle f''( \sqrt {6}) =6 ( \sqrt {6} )^{5} -2 4 ( \sqrt {6})^{3} +10( \sqrt {6})

\displaystyle f''(-\sqrt {6}) = 216\sqrt {6}-144 \sqrt {6} +10\sqrt {6}

\displaystyle f''(-\sqrt {6}) =82\sqrt {6} >0

Therefore, \displaystyle f has a relative minimum at \displaystyle x = \sqrt {6}.

Now. substitute \displaystyle -\sqrt {6} for \displaystyle x:

\displaystyle f''(-\sqrt {6}) =6 (-\sqrt {6} )^{5} -2 4 (-\sqrt {6})^{3} +10(-\sqrt {6})

\displaystyle f''(-\sqrt {6}) =- 216\sqrt {6}+144 \sqrt {6} -10\sqrt {6}

\displaystyle f''(-\sqrt {6}) =-82\sqrt {6} < 0

Therefore, \displaystyle f has a relative maximum at \displaystyle x =- \sqrt {6}.

Example Question #1 : Integrating

Estimate the integral of \displaystyle f(x)=3x^2+1 from 0 to 3 using left-Riemann sum and 6 rectangles. Use \displaystyle \Delta x=0.5

Possible Answers:

\displaystyle 74.25

\displaystyle 46.25

\displaystyle 23.625

\displaystyle 37.125

\displaystyle 23.125

Correct answer:

\displaystyle 23.625

Explanation:

Because our \displaystyle \Delta x is constant, the left Riemann sum will be

\displaystyle R_{L}=\Delta x(f(0)+f(0.5)+f(1)+f(1.5)+f(2)+f(2.5))

\displaystyle R_{L}=0.5\cdot (1+1.75+4+7.75+13+19.75)=23.625

Example Question #1 : Use Riemann Sums

Use Left Riemann sums with 4 subintervals to approximate the area between the x-axis, \displaystyle f(x)=x^4 +1\displaystyle x=-2, and \displaystyle x=2.

Possible Answers:

\displaystyle 10

\displaystyle 22

\displaystyle -12

\displaystyle 15

Correct answer:

\displaystyle 22

Explanation:

To use left Riemann sums, we need to use the following formula:

\displaystyle Area \approx \sum_{i=1}^n f(x_i)\Delta x.

where \displaystyle n is the number of subintervals, (4 in our problem),

\displaystyle i is the "counter" that denotes which subinterval we are working with,(4 subintervals mean that \displaystyle i will be 1, 2, 3, and then 4)

\displaystyle f(x_i) is the function value when you plug in the "i-th" x value, (i-th in this case will be 1-st, 2-nd, 3-rd, and 4-th)

,\displaystyle \Delta x is the width of each subinterval, which we will determine shortly.

and \displaystyle \sum_{i=1}^n means add all \displaystyle n versions together (for us that means add up 4 versions).

 

This fancy equation approximates using boxes. We can rewrite this fancy equation by writing \displaystyle f(x_i)\Delta x, 4 times; 1 time each for \displaystyle i=1\displaystyle i=2\displaystyle i=3, and \displaystyle i=4. This gives us

\displaystyle f(x_1)\Delta x + f(x_2)\Delta x + f(x_3)\Delta x + f(x_4)\Delta x

Think of \displaystyle \Delta x as the base of each box, and \displaystyle f(x_1) as the height of the 1st box.

This is basically \displaystyle Area = (base)(height), 4 times, and then added together.

Now we need to determine what \displaystyle \Delta x, x_1, x_2, x_3, and \displaystyle x_4 are.

To find \displaystyle \Delta x we find the total length between the beginning and ending x values, which are given in the problem as \displaystyle x=-2 and \displaystyle x=2. We then split this total length into 4 pieces, since we are told to use 4 subintervals.

In short, \displaystyle \Delta x = \frac{b - a}{n}= \frac{(2)- (-2)}{4} = 1

Now we need to find the x values that are the left endpoints of each of the 4 subintervals. Left endpoints because we are doing Left Riemann sums.

The left most x value happens to be the smaller of the overall endpoints given in the question. In other words, since we only care about the area from \displaystyle x=-2 to \displaystyle x=2, we'll just use the smaller one, \displaystyle -2, for our first \displaystyle x_i.

Now we know that \displaystyle x_1 = -2.

To find the next endpoint, \displaystyle x_2, just increase the first x by the length of the subinterval, which is \displaystyle \Delta x = 1. In other words

\displaystyle x_2 = x_1 + \Delta x

\displaystyle x_2 = -2 + 1

\displaystyle x_2 = -1

Add the \displaystyle \Delta x again to get \displaystyle x_3

\displaystyle x_3 = x_2 + \Delta x

\displaystyle x_3 = -1 + 1

\displaystyle x_3 = 0

And repeat to find \displaystyle x_4

\displaystyle x_4 = x_3 + \Delta x

\displaystyle x_4 = 0 + 1

\displaystyle x_4 = 1

Now that we have all the pieces, we can plug them in.

 

\displaystyle f(x_1)\Delta x + f(x_2)\Delta x + f(x_3)\Delta x + f(x_4)\Delta x

 

\displaystyle f(-2)\cdot1 + f(-1) \cdot (1)+ f(0)\cdot (1) + f(1)\cdot (1)

plug each value into \displaystyle f(x)=x^4 +1 and then simplify.

\displaystyle [(-2)^4+1](1)+[(-1)^4+1](1)+ [(0)^4+1](1)+[(1)^4+1](1)

\displaystyle [16 + 1]+ [1 + 1]+ [0+ 1]+ [1 + 1]

\displaystyle 17 + 2 + 1 + 2

\displaystyle 22

This is the final answer, which is an approximation of the area under the function.

Example Question #1 : Use Riemann Sums

The function \displaystyle f\left ( x \right ) has the following values on the interval \displaystyle x=\left [ -2,13 \right ]:

\displaystyle f\left ( -2 \right )=5

\displaystyle f\left ( 1 \right )=-19

\displaystyle f\left ( 4 \right )=5

\displaystyle f\left ( 7 \right )=-6

\displaystyle f\left ( 10 \right )=-18

\displaystyle f\left ( 13 \right )=0

Approximate the integral of \displaystyle f\left ( x \right ) on this interval using right Riemann sums.

Possible Answers:

\displaystyle -114

\displaystyle -99

\displaystyle -495

\displaystyle 495

Correct answer:

\displaystyle -114

Explanation:

A Riemann sum integral approximation over an interval \displaystyle \left [ a, b \right ] with \displaystyle n subintervals follows the form:

\displaystyle \int_{a}^{b}f\left ( x \right )dx\approx \frac{b-a}{n}(f(x_{1}))+f\left ( x_{2} \right )+\cdots +f(x_{n}))

It is essentially a sum of \displaystyle n rectangles, each with a base of length: \displaystyle \frac{b-a}{n} and variable heights: \displaystyle f(x_{i}), which depend on the function value at \displaystyle x_{i}.

In our case, we have function values over an interval:

\displaystyle f\left ( -2 \right )=5

\displaystyle f\left ( 1 \right )=-19

\displaystyle f\left ( 4 \right )=5

\displaystyle f\left ( 7 \right )=-6

\displaystyle f\left ( 10 \right )=-18

\displaystyle f\left ( 13 \right )=0

Although the total interval has a length of \displaystyle 15.

Notice the points are equidistant. This distance is our subinterval \displaystyle 3 and since we are using the right point of each interval, we disregard the first function value:

\displaystyle \int_{-2}^{13}f\left ( x \right )\approx 3\left [ (-19)+(5)+(-6)+(-18)+(0)\right ]

\displaystyle \int_{-2}^{13}f\left ( x \right )\approx -114

Example Question #4 : Integrating

Approximate \displaystyle \int_{-8}^{1}f(x)

Using a right Riemann sum, if \displaystyle f(x) has the values:

\displaystyle f(-8)=-13

\displaystyle f(-5)=-19

\displaystyle f(-2)=6

\displaystyle f(1)=-9

Possible Answers:

\displaystyle -105

\displaystyle -66

\displaystyle -35

\displaystyle -315

Correct answer:

\displaystyle -66

Explanation:

A Riemann sum integral approximation over an interval \displaystyle \left [ a, b \right ] with \displaystyle n subintervals follows the form:

\displaystyle \int_{a}^{b}f\left ( x \right )dx\approx \frac{b-a}{n}(f(x_{1}))+f\left ( x_{2} \right )+\cdots +f(x_{n}))

It is essentially a sum of \displaystyle n rectangles, each with a base of length: \displaystyle \frac{b-a}{n} and variable heights: \displaystyle f(x_{i}), which depend on the function value at \displaystyle x_{i}.

In our case, we have function values over an interval:

\displaystyle f(-8)=-13

\displaystyle f(-5)=-19

\displaystyle f(-2)=6

\displaystyle f(1)=-9

Although the total interval has a length of \displaystyle 9 notice the points are equidistant. This distance is our subinterval: \displaystyle 3. Since we are using the right point of each interval, we disregard the first function value:

\displaystyle \int_{-8}^{1}f(x)\approx 3\left [ (-19)+(6)+(-9) \right ]

\displaystyle \int_{-8}^{1}f(x)\approx -66

Example Question #5 : Integrating

Approximate \displaystyle \int_{-2}^{23}f(x)

Using a right Riemann sum, if \displaystyle f(x) has the values:

\displaystyle f(-2)=-2

\displaystyle f(3)=-15

\displaystyle f(8)=14

\displaystyle f(13)=15

\displaystyle f(18)=-9

\displaystyle f(23)=-12

Possible Answers:

\displaystyle -9

\displaystyle -225

\displaystyle -45

\displaystyle -35

Correct answer:

\displaystyle -35

Explanation:

A Riemann sum integral approximation over an interval \displaystyle \left [ a, b \right ] with \displaystyle n subintervals follows the form:

\displaystyle \int_{a}^{b}f\left ( x \right )dx\approx \frac{b-a}{n}(f(x_{1}))+f\left ( x_{2} \right )+\cdots +f(x_{n}))

It is essentially a sum of \displaystyle n rectangles, each with a base of length: \displaystyle \frac{b-a}{n} and variable heights: \displaystyle f(x_{i}), which depend on the function value at \displaystyle x_{i}.

In our case, we have function values over an interval:

\displaystyle f(-2)=-2

\displaystyle f(3)=-15

\displaystyle f(8)=14

\displaystyle f(13)=15

\displaystyle f(18)=-9

\displaystyle f(23)=-12

Although the total interval has a length of \displaystyle 25 notice the points are equidistant, with \displaystyle 5 intervals between. Each equidistant interval has length: 5

Since we are using the right point of each interval, we disregard the first function value:

\displaystyle \int_{-2}^{23}f(x)\approx 5\left [ (-15)+(14)+(15)+(-9)+(-12) \right ]

\displaystyle \int_{-2}^{23}f(x)\approx -35

Example Question #1 : Use Riemann Sums

Approximate \displaystyle \int_{-7}^{13}f(x)

Using a right Riemann sum, if \displaystyle f(x) has the values:

\displaystyle f(-7)=18

\displaystyle f(-2)=-17

\displaystyle f(3)=-16

\displaystyle f(8)=-15

\displaystyle f(13)=-14

Possible Answers:

\displaystyle -44

\displaystyle -220

\displaystyle -310

\displaystyle -880

Correct answer:

\displaystyle -310

Explanation:

A Riemann sum integral approximation over an interval \displaystyle \left [ a, b \right ] with \displaystyle n subintervals follows the form:

\displaystyle \int_{a}^{b}f\left ( x \right )dx\approx \frac{b-a}{n}(f(x_{1}))+f\left ( x_{2} \right )+\cdots +f(x_{n}))

It is essentially a sum of \displaystyle n rectangles, each with a base of length: \displaystyle \frac{b-a}{n} and variable heights: \displaystyle f(x_{i}), which depend on the function value at \displaystyle x_{i}.

In our case, we have function values over an interval:

\displaystyle f(-7)=18

\displaystyle f(-2)=-17

\displaystyle f(3)=-16

\displaystyle f(8)=-15

\displaystyle f(13)=-14

Although the total interval has a length of \displaystyle 20 notice the points are equidistant, with \displaystyle 4 intervals between. Each equidistant interval has length: 5

Since we are using the right point of each interval, we disregard the first function value:

\displaystyle \int_{-7}^{13}f(x)\approx 5\left [ (-17)+(-16)+(-15)+(-14) \right ]

\displaystyle \int_{-7}^{13}f(x)\approx -310

Example Question #7 : Integrating

Approximate \displaystyle \int_{4}^{12}f(x)

Using a right Riemann sum, if \displaystyle f(x) has the values:

\displaystyle f(4)=9

\displaystyle f(6)=10

\displaystyle f(8)=-18

\displaystyle f(10)=15

\displaystyle f(12)=18

Possible Answers:

\displaystyle 68

\displaystyle 34

\displaystyle 272

\displaystyle 50

Correct answer:

\displaystyle 50

Explanation:

A Riemann sum integral approximation over an interval \displaystyle \left [ a, b \right ] with \displaystyle n subintervals follows the form:

\displaystyle \int_{a}^{b}f\left ( x \right )dx\approx \frac{b-a}{n}(f(x_{1}))+f\left ( x_{2} \right )+\cdots +f(x_{n}))

It is essentially a sum of \displaystyle n rectangles, each with a base of length: \displaystyle \frac{b-a}{n} and variable heights: \displaystyle f(x_{i}), which depend on the function value at \displaystyle x_{i}.

In our case, we have function values over an interval:

\displaystyle f(4)=9

\displaystyle f(6)=10

\displaystyle f(8)=-18

\displaystyle f(10)=15

\displaystyle f(12)=18

Although the total interval has a length of \displaystyle 8 notice the points are equidistant, with \displaystyle 4 intervals between. Each equidistant interval has length: \displaystyle 2. Since we are using the right point of each interval, we disregard the first function value:

\displaystyle \int_{4}^{12}f(x)\approx 2\left [ (10)+(-18)+(15)+(18) \right ]

\displaystyle \int_{4}^{12}f(x)\approx 50

Example Question #8 : Integrating

The function \displaystyle f\left ( x \right ) has the following values on the interval \displaystyle x=\left [ -2,38 \right ]:

\displaystyle f\left ( -2 \right )=-13

\displaystyle f\left ( 6 \right )=-4

\displaystyle f\left ( 14 \right )=-15

\displaystyle f\left ( 22 \right )=-19

\displaystyle f\left ( 30 \right )=18

\displaystyle f\left ( 38 \right )=-8

Approximate the integral of \displaystyle f\left ( x \right ) on this interval using right Riemann sums.

Possible Answers:

\displaystyle -41

\displaystyle -224

\displaystyle -328

\displaystyle -1640

Correct answer:

\displaystyle -224

Explanation:

A Riemann sum integral approximation over an interval \displaystyle \left [ a, b \right ] with \displaystyle n subintervals follows the form:

\displaystyle \int_{a}^{b}f\left ( x \right )dx\approx \frac{b-a}{n}(f(x_{1}))+f\left ( x_{2} \right )+\cdots +f(x_{n}))

It is essentially a sum of \displaystyle n rectangles, each with a base of length: \displaystyle \frac{b-a}{n} and variable heights: \displaystyle f(x_{i}), which depend on the function value at \displaystyle x_{i}.

In our case, we have function values over an interval:

\displaystyle f\left ( -2 \right )=-13

\displaystyle f\left ( 6 \right )=-4

\displaystyle f\left ( 14 \right )=-15

\displaystyle f\left ( 22 \right )=-19

\displaystyle f\left ( 30 \right )=18

\displaystyle f\left ( 38 \right )=-8

Although the total interval has a length of \displaystyle 40.

Notice the points are equidistant, with \displaystyle 5 intervals between them. Each equidistance interval has length: \displaystyle 8. Since we are using the right point of each interval, we disregard the first function value:

\displaystyle \int_{-2}^{38}f\left ( x \right )\approx 8\left [ (-4)+(-15)+(-19)+(18)+(-8)\right ]

\displaystyle \int_{-2}^{38}f\left ( x \right )\approx -224

Example Question #9 : Integrating

Approximate \displaystyle \int_{0}^{15}f(x)

Using a right Riemann sum, if \displaystyle f(x) has the values:

\displaystyle f(0)=-19

\displaystyle f(5)=14

\displaystyle f(10)=2

\displaystyle f(15)=15

Possible Answers:

\displaystyle 155

\displaystyle 60

\displaystyle 180

\displaystyle 12

Correct answer:

\displaystyle 155

Explanation:

A Riemann sum integral approximation over an interval \displaystyle \left [ a, b \right ] with \displaystyle n subintervals follows the form:

\displaystyle \int_{a}^{b}f\left ( x \right )dx\approx \frac{b-a}{n}(f(x_{1}))+f\left ( x_{2} \right )+\cdots +f(x_{n}))

It is essentially a sum of \displaystyle n rectangles, each with a base of length: \displaystyle \frac{b-a}{n} and variable heights: \displaystyle f(x_{i}), which depend on the function value at \displaystyle x_{i}.

In our case, we have function values over an interval:

\displaystyle f(0)=-19

\displaystyle f(5)=14

\displaystyle f(10)=2

\displaystyle f(15)=15

Although the total interval has a length of \displaystyle 15 notice the points are equidistant, with \displaystyle 3 intervals between. Each equidistant interval has length: \displaystyle 5. Since we are using the right point of each interval, we disregard the first function value:

\displaystyle \int_{0}^{15}f(x)\approx 5\left [ (14)+(2)+(15) \right ]

\displaystyle \int_{0}^{15}f(x)\approx 155

Learning Tools by Varsity Tutors