Common Core: 2nd Grade Math : Mentally Add and Subtract 10 or 100 to a Given Number : CCSS.Math.Content.2.NBT.B.8

Study concepts, example questions & explanations for Common Core: 2nd Grade Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1071 : Common Core Math: Grade 2

Solve the following:

\(\displaystyle \frac{\begin{array}[b]{r}432\\ +\ 100\end{array}}{ }\)

Possible Answers:

\(\displaystyle 332\)

\(\displaystyle 300\)

\(\displaystyle 500\)

\(\displaystyle 532\)

\(\displaystyle 442\)

Correct answer:

\(\displaystyle 532\)

Explanation:

When adding any number by \(\displaystyle 100\) the only number that will change in your answer is the hundreds place. 

\(\displaystyle 2+0=2\)

\(\displaystyle 3+0=3\)

\(\displaystyle 4+1=5\)

\(\displaystyle \frac{\begin{array}[b]{r}432\\ +\ 100\end{array}}{\ \ \ \space 532}\)

Example Question #131 : How To Add

\(\displaystyle \frac{\begin{array}[b]{r}349\\ +\ 100\end{array}}{?}\)

Possible Answers:

\(\displaystyle 200\)

\(\displaystyle 400\)

\(\displaystyle 249\)

\(\displaystyle 359\)

\(\displaystyle 449\)

Correct answer:

\(\displaystyle 449\)

Explanation:

When adding any number by \(\displaystyle 100\) the only number that will change in your answer is the hundreds place. 

\(\displaystyle 9+0=9\)

\(\displaystyle 4+0=4\)

\(\displaystyle 3+1=4\)

\(\displaystyle \frac{\begin{array}[b]{r}349\\ +\ 100\end{array}}{\ \ \ \space449}\)

Example Question #1081 : Number & Operations In Base Ten

\(\displaystyle \frac{\begin{array}[b]{r}222\\ +\ 100\end{array}}{?}\)

Possible Answers:

\(\displaystyle 232\)

\(\displaystyle 100\)

\(\displaystyle 322\)

\(\displaystyle 200\)

\(\displaystyle 300\)

Correct answer:

\(\displaystyle 322\)

Explanation:

When adding any number by \(\displaystyle 100\) the only number that will change in your answer is the hundreds place. 

\(\displaystyle 2+0=2\)

\(\displaystyle 2+0=2\)

\(\displaystyle 2+1=3\)

\(\displaystyle \frac{\begin{array}[b]{r}222\\ +\ 100\end{array}}{\ \ \ \space322}\)

Example Question #1082 : Number & Operations In Base Ten

\(\displaystyle \frac{\begin{array}[b]{r}587\\ +\ 100\end{array}}{?}\)

Possible Answers:

\(\displaystyle 500\)

\(\displaystyle 597\)

\(\displaystyle 587\)

\(\displaystyle 687\)

\(\displaystyle 600\)

Correct answer:

\(\displaystyle 687\)

Explanation:

When adding any number by \(\displaystyle 100\) the only number that will change in your answer is the hundreds place. 

\(\displaystyle 7+0=7\)

\(\displaystyle 8+0=8\)

\(\displaystyle 5+1=6\)

\(\displaystyle \frac{\begin{array}[b]{r}587\\ +\ 100\end{array}}{\ \ \ \space687}\)

Example Question #1083 : Number & Operations In Base Ten

\(\displaystyle \frac{\begin{array}[b]{r}642\\ +\ 100\end{array}}{?}\)

Possible Answers:

\(\displaystyle 652\)

\(\displaystyle 500\)

\(\displaystyle 842\)

\(\displaystyle 742\)

\(\displaystyle 442\)

Correct answer:

\(\displaystyle 742\)

Explanation:

When adding any number by \(\displaystyle 100\) the only number that will change in your answer is the hundreds place. 

\(\displaystyle 2+0=2\)

\(\displaystyle 4+0=4\)

\(\displaystyle 6+1=\) \(\displaystyle 7\)

\(\displaystyle \frac{\begin{array}[b]{r}642\\ +\ 100\end{array}}{\ \ \ \space742}\)

Example Question #1084 : Number & Operations In Base Ten

\(\displaystyle \frac{\begin{array}[b]{r}789\\ +\ 100\end{array}}{?}\)

Possible Answers:

\(\displaystyle 689\)

\(\displaystyle 889\)

\(\displaystyle 989\)

\(\displaystyle 800\)

\(\displaystyle 799\)

Correct answer:

\(\displaystyle 889\)

Explanation:

When adding any number by \(\displaystyle 100\) the only number that will change in your answer is the hundreds place.

\(\displaystyle 9+0=9\)

\(\displaystyle 8+0=8\)

\(\displaystyle 7+1=8\)

\(\displaystyle \frac{\begin{array}[b]{r}789\\ +\ 100\end{array}}{\ \ \ \space889}\)

Example Question #1085 : Number & Operations In Base Ten

\(\displaystyle \frac{\begin{array}[b]{r}867\\ +\ 100\end{array}}{?}\)

Possible Answers:

\(\displaystyle 967\)

\(\displaystyle 900\)

\(\displaystyle 877\)

\(\displaystyle 767\)

\(\displaystyle 800\)

Correct answer:

\(\displaystyle 967\)

Explanation:

When adding any number by \(\displaystyle 100\) the only number that will change in your answer is the hundreds place. 

\(\displaystyle 7+0=7\)

\(\displaystyle 6+0=6\)

\(\displaystyle 8+1=9\)

\(\displaystyle \frac{\begin{array}[b]{r}867\\ +\ 100\end{array}}{\ \ \ \space967}\)

Example Question #1086 : Number & Operations In Base Ten

\(\displaystyle \frac{\begin{array}[b]{r}100\\ +\ 100\end{array}}{?}\)

Possible Answers:

\(\displaystyle 300\)

\(\displaystyle 200\)

\(\displaystyle 110\)

\(\displaystyle 100\)

\(\displaystyle 0\)

Correct answer:

\(\displaystyle 200\)

Explanation:

When adding any number by \(\displaystyle 100\) the only number that will change in your answer is the hundreds place. 

\(\displaystyle 0+0=0\)

\(\displaystyle 0+0=0\)

\(\displaystyle 1+1=2\)

\(\displaystyle \frac{\begin{array}[b]{r}100\\ +\ 100\end{array}}{\ \ \ \space200}\)

Example Question #1087 : Number & Operations In Base Ten

\(\displaystyle \frac{\begin{array}[b]{r}175\\ +\ 100\end{array}}{?}\)

Possible Answers:

\(\displaystyle 75\)

\(\displaystyle 375\)

\(\displaystyle 175\)

\(\displaystyle 185\)

\(\displaystyle 275\)

Correct answer:

\(\displaystyle 275\)

Explanation:

When adding any number by \(\displaystyle 100\) the only number that will change in your answer is the hundreds place. 

\(\displaystyle 5+0=5\)

\(\displaystyle 7+0=7\)

\(\displaystyle 1+1=2\)

\(\displaystyle \frac{\begin{array}[b]{r}175\\ +\ 100\end{array}}{\ \ \ \space275}\)

Example Question #1 : Mentally Add And Subtract 10 Or 100 To A Given Number : Ccss.Math.Content.2.Nbt.B.8

\(\displaystyle \frac{\begin{array}[b]{r}386\\ +\ 100\end{array}}{?}\)

Possible Answers:

\(\displaystyle 396\)

\(\displaystyle 486\)

\(\displaystyle 400\)

\(\displaystyle 286\)

\(\displaystyle 586\)

Correct answer:

\(\displaystyle 486\)

Explanation:

When adding any number by \(\displaystyle 100\) the only number that will change in your answer is the hundreds place. 

\(\displaystyle 6+0=6\)

\(\displaystyle 8+0=8\)

\(\displaystyle 3+1=4\)

\(\displaystyle \frac{\begin{array}[b]{r}386\\ +\ 100\end{array}}{\ \ \ \space486}\)

Learning Tools by Varsity Tutors