Common Core: 4th Grade Math : Measurement & Data

Study concepts, example questions & explanations for Common Core: 4th Grade Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Measurement & Data

Fill in the missing piece of the table. 


Screen shot 2015 09 01 at 9.25.27 am

Possible Answers:

\displaystyle 4000,000

\displaystyle 40,000

\displaystyle 400

\displaystyle 4,000

\displaystyle 400,000

Correct answer:

\displaystyle 400,000

Explanation:

To solve this problem we can set up a proportion and cross multiply to solve for our unknown. 

\displaystyle \frac{1km}{100,000 cm}=\frac{4km}{x}

First we cross multiply. 

\displaystyle 1km(x)=4km(100,000cm) 

Then we divide each side by \displaystyle 1km to isolate the \displaystyle x.

\displaystyle \frac{1km(x)}{1km}=\frac{4km(100,000cm)}{1km}

\displaystyle x=400,000 cm

Example Question #1 : Know Relative Sizes Of Measurement Units: Ccss.Math.Content.4.Md.A.1

Fill in the missing piece of the table. 

Screen shot 2015 09 01 at 9.29.13 am

 

Possible Answers:

\displaystyle 4000

\displaystyle 40

\displaystyle 40,000

\displaystyle 4

\displaystyle 400

Correct answer:

\displaystyle 400

Explanation:

To solve this problem we can set up a proportion and cross multiply to solve for our unknown. 

\displaystyle \frac{1m}{100 cm}=\frac{4m}{x}

First we cross multiply. 

\displaystyle 1m(x)=4m(100cm) 

Then we divide each side by \displaystyle 1m to isolate the \displaystyle x.

\displaystyle \frac{1m(x)}{1m}=\frac{4m(100cm)}{1m}

\displaystyle x=400 cm

Example Question #1 : Solve Problems Involving Measurement And Conversion Of Measurements

Fill in the missing piece of the table. 


Screen shot 2015 09 01 at 9.30.02 am

Possible Answers:

\displaystyle 20

\displaystyle 2000

\displaystyle 2

\displaystyle 200

\displaystyle 20,000

Correct answer:

\displaystyle 200

Explanation:

To solve this problem we can set up a proportion and cross multiply to solve for our unknown. 

\displaystyle \frac{1m}{100 cm}=\frac{2m}{x}

First we cross multiply. 

\displaystyle 1m(x)=2m(100cm) 

Then we divide each side by \displaystyle 1m to isolate the \displaystyle x.

\displaystyle \frac{1m(x)}{1m}=\frac{2m(100cm)}{1m}

\displaystyle x=200 cm

Example Question #1 : Solve Problems Involving Measurement And Conversion Of Measurements

Fill in the missing piece of the table. 


Screen shot 2015 09 01 at 9.31.34 am

Possible Answers:

\displaystyle 5

\displaystyle 50,000

\displaystyle 500

\displaystyle 5000

\displaystyle 50

Correct answer:

\displaystyle 500

Explanation:

To solve this problem we can set up a proportion and cross multiply to solve for our unknown. 

\displaystyle \frac{1m}{100 cm}=\frac{5m}{x}

First we cross multiply. 

\displaystyle 1m(x)=5m(100cm) 

Then we divide each side by \displaystyle 1m to isolate the \displaystyle x.

\displaystyle \frac{1m(x)}{1m}=\frac{5m(100cm)}{1m}

\displaystyle x=500 cm

Example Question #2 : Measurement & Data

Fill in the missing piece of the table. 


Screen shot 2015 09 01 at 10.22.18 am

Possible Answers:

\displaystyle 320

\displaystyle 280

\displaystyle 300

\displaystyle 340

\displaystyle 260

Correct answer:

\displaystyle 300

Explanation:

To solve this problem we can set up a proportion and cross multiply to solve for our unknown. 

\displaystyle \frac{1hr}{60 min}=\frac{5hr}{x}

First we cross multiply. 

\displaystyle 1hr(x)=5hr(60min) 

Then we divide each side by \displaystyle 1hr to isolate the \displaystyle x.

\displaystyle \frac{1hr(x)}{1hr}=\frac{5hr(60m)}{1hr}

\displaystyle x=300 min

Example Question #1 : Measurement & Data

Fill in the missing piece of the table. 

Screen shot 2015 09 01 at 10.22.43 am

Possible Answers:

\displaystyle 280

\displaystyle 230

\displaystyle 260

\displaystyle 270

\displaystyle 240

Correct answer:

\displaystyle 240

Explanation:

To solve this problem we can set up a proportion and cross multiply to solve for our unknown. 

\displaystyle \frac{1hr}{60 min}=\frac{4hr}{x}

First we cross multiply. 

\displaystyle 1hr(x)=4hr(60min) 

Then we divide each side by \displaystyle 1hr to isolate the \displaystyle x.

\displaystyle \frac{1hr(x)}{1hr}=\frac{4hr(60m)}{1hr}

\displaystyle x=240 min

Example Question #1 : Solve Problems Involving Measurement And Conversion Of Measurements

Fill in the missing piece of the table. 


Screen shot 2015 09 01 at 10.22.55 am

Possible Answers:

\displaystyle 170

\displaystyle 140

\displaystyle 190\displaystyle 150

\displaystyle 160

\displaystyle 180

Correct answer:

\displaystyle 180

Explanation:

To solve this problem we can set up a proportion and cross multiply to solve for our unknown. 

\displaystyle \frac{1hr}{60 min}=\frac{3hr}{x}

First we cross multiply. 

\displaystyle 1hr(x)=3hr(60min) 

Then we divide each side by \displaystyle 1hr to isolate the \displaystyle x.

\displaystyle \frac{1hr(x)}{1hr}=\frac{3hr(60m)}{1hr}

\displaystyle x=180 min

Example Question #3 : Measurement & Data

Fill in the missing piece of the table. 

Screen shot 2016 01 13 at 9.37.15 am

 

Possible Answers:

\displaystyle 18,000

\displaystyle 190,000

\displaystyle 170,800

\displaystyle 18,800

\displaystyle 17,000

Correct answer:

\displaystyle 18,000

Explanation:

To solve this problem we can set up a proportion and cross multiply to solve for our unknown. 

\displaystyle \frac{1hr}{3600 sec}=\frac{5hr}{x}

First we cross multiply. 

\displaystyle 1hr(x)=5hr(3600sec) 

Then we divide each side by \displaystyle 1hr to isolate the \displaystyle x.

\displaystyle \frac{1hr(x)}{1hr}=\frac{5hr(3600sec)}{1hr}

\displaystyle x=18,000 sec

Example Question #3 : Know Relative Sizes Of Measurement Units: Ccss.Math.Content.4.Md.A.1

Fill in the missing piece of the table. 


Screen shot 2016 01 13 at 9.41.34 am

Possible Answers:

\displaystyle 10,800

\displaystyle 16,000

\displaystyle 18,000

\displaystyle 10,000

\displaystyle 10,600

Correct answer:

\displaystyle 10,800

Explanation:

To solve this problem we can set up a proportion and cross multiply to solve for our unknown. 

\displaystyle \frac{1hr}{3600 sec}=\frac{3hr}{x}

First we cross multiply. 

\displaystyle 1hr(x)=3hr(3600sec) 

Then we divide each side by \displaystyle 1hr to isolate the \displaystyle x.

\displaystyle \frac{1hr(x)}{1hr}=\frac{3hr(3600sec)}{1hr}

\displaystyle x=10,800 sec

Example Question #3 : Solve Problems Involving Measurement And Conversion Of Measurements

Fill in the missing piece of the table. 


Screen shot 2016 01 13 at 9.48.15 am

Possible Answers:

\displaystyle 7\textup,200

\displaystyle 6\textup,000

\displaystyle 6\textup,200

\displaystyle 500

\displaystyle 700

Correct answer:

\displaystyle 7\textup,200

Explanation:

To solve this problem we can set up a proportion and cross multiply to solve for our unknown. 

\displaystyle \frac{1hr}{3600 sec}=\frac{2hr}{x}

First we cross multiply. 

\displaystyle 1hr(x)=2hr(3660sec) 

Then we divide each side by \displaystyle 1hr to isolate the \displaystyle x.

\displaystyle \frac{1hr(x)}{1hr}=\frac{2hr(3600sec)}{1hr}

\displaystyle x=7200 sec

Learning Tools by Varsity Tutors