Common Core: 4th Grade Math : Use Decimal Notation for Fractions With Denominators 10 or 100: CCSS.Math.Content.4.NF.C.6

Study concepts, example questions & explanations for Common Core: 4th Grade Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Use Decimal Notation For Fractions With Denominators 10 Or 100: Ccss.Math.Content.4.Nf.C.6

What decimal is equivalent to \displaystyle \frac{57}{100}?

 

Possible Answers:

\displaystyle .57

\displaystyle 50.7

\displaystyle .057

\displaystyle 5.7

\displaystyle 57.00

Correct answer:

\displaystyle .57

Explanation:

\displaystyle \frac{57}{100} is fifty-seven hundredths. 

\displaystyle .57 is fifty-seven hundredths. When we say a decimal, we say the number and add the place-value of the last digit. 

Example Question #2 : Use Decimal Notation For Fractions With Denominators 10 Or 100: Ccss.Math.Content.4.Nf.C.6

What decimal is equivalent to \displaystyle \frac{69}{100}?

 

Possible Answers:

\displaystyle .69

\displaystyle 60.9

\displaystyle 69.9

\displaystyle 6.9

\displaystyle 69.09

Correct answer:

\displaystyle .69

Explanation:

\displaystyle \frac{69}{100} is sixty-nine hundredths. 

\displaystyle .69 is sixty-nine hundredths. When we say a decimal, we say the number and add the place-value of the last digit. 

Example Question #3 : Use Decimal Notation For Fractions With Denominators 10 Or 100: Ccss.Math.Content.4.Nf.C.6

What decimal is equivalent to \displaystyle \frac{18}{100}?

 

Possible Answers:

\displaystyle 10.08

\displaystyle .018

\displaystyle .18

\displaystyle 10.8

\displaystyle 1.8

Correct answer:

\displaystyle .18

Explanation:

\displaystyle \frac{18}{100} is eighteen hundredths. 

\displaystyle .18 is eighteen hundredths. When we say a decimal, we say the number and add the place-value of the last digit. 

Example Question #4 : Use Decimal Notation For Fractions With Denominators 10 Or 100: Ccss.Math.Content.4.Nf.C.6

What decimal is equivalent to \displaystyle \frac{7}{100}?

 

Possible Answers:

\displaystyle .7

\displaystyle 77.7

\displaystyle 7.07

\displaystyle 7.7

\displaystyle .07

Correct answer:

\displaystyle .07

Explanation:

\displaystyle \frac{7}{100} is seven hundredths. 

\displaystyle .07 is seven hundredths. When we say a decimal, we say the number and add the place-value of the last digit. 

Example Question #5 : Use Decimal Notation For Fractions With Denominators 10 Or 100: Ccss.Math.Content.4.Nf.C.6

Select the decimal that is equivalent to \displaystyle \frac{81}{100}

 

Possible Answers:

\displaystyle 80.1

\displaystyle 81.01

\displaystyle .81

\displaystyle 81.00

\displaystyle 8.1

Correct answer:

\displaystyle .81

Explanation:

\displaystyle \frac{81}{100} is eighty-one hundredths. 

\displaystyle .81 is eighty-one hundredths. When we say a decimal, we say the number and add the place-value of the last digit. 

Example Question #6 : Use Decimal Notation For Fractions With Denominators 10 Or 100: Ccss.Math.Content.4.Nf.C.6

Select the decimal that is equivalent to \displaystyle \frac{12}{100}

 

Possible Answers:

\displaystyle .012

\displaystyle 12.12

\displaystyle .12

\displaystyle 1.2

\displaystyle 10.2

Correct answer:

\displaystyle .12

Explanation:

\displaystyle \frac{12}{100} is twelve hundredths. 

\displaystyle .12 is twelve hundredths. When we say a decimal, we say the number and add the place-value of the last digit. 

Example Question #31 : Understand Decimal Notation For Fractions, And Compare Decimal Fractions

What decimal is equivalent to \displaystyle \frac{22}{100}?

Possible Answers:

\displaystyle .02

\displaystyle .2

\displaystyle 2.2

\displaystyle .22

\displaystyle 2.02

Correct answer:

\displaystyle .22

Explanation:

\displaystyle \frac{22}{100} is twenty-two hundredths. 

\displaystyle .22 is twenty-two hundredths. When we say a decimal, we say the number and add the place-value of the last digit. 

Example Question #3 : Use Decimal Notation For Fractions With Denominators 10 Or 100: Ccss.Math.Content.4.Nf.C.6

What decimal is equivalent to \displaystyle \frac{19}{100}?

 

Possible Answers:

\displaystyle .019

\displaystyle .19

\displaystyle .9

\displaystyle 1.9

\displaystyle 19

Correct answer:

\displaystyle .19

Explanation:

\displaystyle \frac{19}{100} is nineteen hundredths. 

\displaystyle .19 is nineteen hundredths. When we say a decimal, we say the number and add the place-value of the last digit. 

Example Question #7 : Use Decimal Notation For Fractions With Denominators 10 Or 100: Ccss.Math.Content.4.Nf.C.6

What decimal is equivalent to \displaystyle \frac{37}{100}?

 

Possible Answers:

\displaystyle 3.7

\displaystyle .037

\displaystyle .3

\displaystyle .07

\displaystyle .37

Correct answer:

\displaystyle .37

Explanation:

\displaystyle \frac{37}{100} is thirty-seven hundredths. 

\displaystyle .37 is thirty-seven hundredths. When we say a decimal, we say the number and add the place-value of the last digit. 

Example Question #8 : Use Decimal Notation For Fractions With Denominators 10 Or 100: Ccss.Math.Content.4.Nf.C.6

What decimal is equivalent to \displaystyle \frac{47}{100}?

 

Possible Answers:

\displaystyle 4.7

\displaystyle .47

\displaystyle .4

\displaystyle 47.

\displaystyle .07

Correct answer:

\displaystyle .47

Explanation:

\displaystyle \frac{47}{100} is forty-seven hundredths. 

\displaystyle .47 is forty-seven hundredths. When we say a decimal, we say the number and add the place-value of the last digit. 

Learning Tools by Varsity Tutors