Common Core: 7th Grade Math : Apply Properties of Operations to Expand Linear Expressions with Rational Coefficients: CCSS.Math.Content.7.EE.A.1

Study concepts, example questions & explanations for Common Core: 7th Grade Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #51 : Variables

If \displaystyle 15 is added to \displaystyle \frac{1}{3} of another number, the result is \displaystyle 24. What is the other number?

Possible Answers:

\displaystyle 27

\displaystyle 18

\displaystyle 7

\displaystyle 9

Correct answer:

\displaystyle 27

Explanation:

The first step is to translate the words, "if \displaystyle 15 is added to \displaystyle \frac{1}{3} of another number, the result is \displaystyle 24," into an equation. This gives us:

\displaystyle 15+\frac{1}{3}x=24

Subtract \displaystyle 15 from each side. 

\displaystyle \frac{1}{3}x=9

Multiply each side by \displaystyle 3

\displaystyle x=27

Therefore, \displaystyle 27 is the correct answer. 

Example Question #171 : Algebraic Concepts

Simplify the following expression: 

\displaystyle 5x+7y-2x+3y

Possible Answers:

Cannot be computed

\displaystyle 3x+10y

\displaystyle 15xy-3x

\displaystyle 13xy

\displaystyle 5x+7y-2x+3y

Correct answer:

\displaystyle 3x+10y

Explanation:

When adding and subtracting variable, you can only combine like variables.  

That means all of the \displaystyle x variables are solved separately from the \displaystyle y variables.  

Then you just add and subtract the constants normally so \displaystyle 5x-2x=3x and \displaystyle 7y+3y=10y.  

So the final answer is \displaystyle 3x+10y.

Example Question #181 : Algebraic Concepts

Simplify the followng:

\displaystyle a + 4a

Possible Answers:

\displaystyle 4a^2

\displaystyle 4a

\displaystyle 4aa

\displaystyle 5a

\displaystyle 5a^2

Correct answer:

\displaystyle 5a

Explanation:

When adding variables together, you must first make sure you are combining the same variable.  So, in this case

\displaystyle a+4a

we can see that both terms contain the variable a.  Therefore, we can combine them. 

Now, when we combine them, we can think of the variables as objects.  So, we can say were are combining an apple and 4 apples together.  So,

\displaystyle \text{apple} + 4\text{ apples } = 5\text{ apples}

We can simplify our problem the same way.

\displaystyle a +4a = 5a

Example Question #1 : How To Subtract Variables

Simplify:

\displaystyle 14x - 5 (x + 8)

Possible Answers:

\displaystyle 9x + 8

\displaystyle 9x -40

\displaystyle 9x - 8

\displaystyle x

\displaystyle 9x+ 40

Correct answer:

\displaystyle 9x -40

Explanation:

\displaystyle 14x - 5 (x + 8)

\displaystyle = 14x - 5 \cdot x - 5 \cdot 8

\displaystyle = 14x - 5x - 40

\displaystyle = (14- 5) x - 40

\displaystyle = 9x - 40

Example Question #1 : Expressions & Equations

Simplify:

\displaystyle 8 (x - 7) - 3(x + 2)

Possible Answers:

\displaystyle 11x-9

\displaystyle 5 x - 50

\displaystyle 5x-9

\displaystyle 11x - 62

\displaystyle 5 x - 62

Correct answer:

\displaystyle 5 x - 62

Explanation:

\displaystyle 8 (x - 7) - 3(x + 2)

\displaystyle = 8 \cdot x -8 \cdot 7 - 3 \cdot x + (-3) \cdot 2

\displaystyle = 8x -56 - 3 x -6

\displaystyle = 8x - 3 x -56 -6

\displaystyle =( 8 - 3 ) x - (56 + 6)

\displaystyle =5 x - 62

Example Question #101 : Algebraic Concepts

Simplify:

\displaystyle 3x + 2xy - 3y + 4x - 15y

Possible Answers:

\displaystyle -9xy

\displaystyle 3x + 3xy - 15y

\displaystyle 7x + 2xy - 12y

\displaystyle 3x - xy + 4x - 15y

\displaystyle 7x + 2xy - 18y

Correct answer:

\displaystyle 7x + 2xy - 18y

Explanation:

This problem is just a matter of grouping together like terms.  Remember that terms like \displaystyle xy are treated as though they were their own, different variable:

\displaystyle 3x + 4x - 3y - 15y + 2xy

The only part that might be a little hard is:

\displaystyle -3y - 15y

If you are confused, think of your number line.  This is like "going back" (more negative) from 15.  Therefore, you ranswer will be:

\displaystyle 7x + 2xy - 18y

Example Question #1 : Expressions & Equations

Simplify:

\displaystyle 15a + 23b - (13b - 2a)

Possible Answers:

\displaystyle 13a + 36b

\displaystyle 13a + 10b

\displaystyle 17a + 10b

\displaystyle 27ab

\displaystyle 2a + 21b

Correct answer:

\displaystyle 17a + 10b

Explanation:

You need to begin by distributing the minus sign through the whole group \displaystyle (13b - 2a).  This gives you:

\displaystyle 15a + 23b - (13b - 2a) = 15a + 23b - 13b - (-2a)

Simplifying the double negative, you get:

\displaystyle 15a + 23b - 13b + 2a

Now, you can move the like terms next to each other:

\displaystyle 15a + 2a + 23b - 13b

Finally, simplify:

\displaystyle 17a + 10b

Example Question #21 : How To Subtract Variables

Simplify:

\displaystyle 57x - 3(4x - 5y)

Possible Answers:

\displaystyle 69x -15y

\displaystyle 30xy

\displaystyle 60xy

\displaystyle 45x - 15y

\displaystyle 45x + 15y

Correct answer:

\displaystyle 45x + 15y

Explanation:

Begin by distributing the \displaystyle -3:

\displaystyle 57x - 3(4x) - (-3)(5y)

Multiply each factor:

\displaystyle 57x - 12x - (-15y)

Change the double negation to addition:

\displaystyle 57x - 12x +15y

Combine like terms:

\displaystyle 45x + 15y

Example Question #111 : Algebraic Concepts

Simplify:

\displaystyle 55x - 13xy - 2(5y + 10xy)

Possible Answers:

\displaystyle 42xy

\displaystyle 12xy

\displaystyle 55x - 3xy - 10y

\displaystyle 55x - 43xy

\displaystyle 55x - 33xy - 10y

Correct answer:

\displaystyle 55x - 33xy - 10y

Explanation:

Begin by distributing the \displaystyle -2:

\displaystyle 55x - 13xy + (-2)5y + (-2)10xy

Multiply all factors:

\displaystyle 55x - 13xy + (-10)y + (-20)xy

Group together the only like factor (\displaystyle xy):

\displaystyle 55x - 13xy-20xy -10y

Combine like terms:

\displaystyle 55x - 33xy -10y

Example Question #711 : Concepts

Simplify:

\displaystyle 8(x+7) - 3 (x + 10)

Possible Answers:

\displaystyle 9x+22

\displaystyle 5x+ 26

\displaystyle 5x+ 46

\displaystyle 9x + 43

Correct answer:

\displaystyle 5x+ 26

Explanation:

\displaystyle 8(x+7) - 3 (x + 10)

\displaystyle = 8 \cdot x+ 8 \cdot 7 - 3 \cdot x - 3 \cdot 10

\displaystyle = 8 x+ 56 - 3x - 30

\displaystyle = 5x+ 26

Learning Tools by Varsity Tutors