Common Core: 7th Grade Math : Divide Integers: CCSS.Math.Content.7.NS.A.2b

Study concepts, example questions & explanations for Common Core: 7th Grade Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #261 : Operations And Properties

\displaystyle -96\div-6

Possible Answers:

\displaystyle 16

\displaystyle 30

\displaystyle -16

\displaystyle 24

\displaystyle -20

Correct answer:

\displaystyle 16

Explanation:

When two negative numbers are divided, the answer is positive. Divide normaly. Answer is \displaystyle 16.

Example Question #262 : Operations And Properties

\displaystyle 87\div-3

Possible Answers:

\displaystyle 29

\displaystyle 27

\displaystyle -86

\displaystyle -29

\displaystyle -13

Correct answer:

\displaystyle -29

Explanation:

When a positive number and a negative number is divided, the answer is negative. Just divide normally. Answer is \displaystyle -29.

Example Question #54 : Negative Numbers

\displaystyle 42/-6

Possible Answers:

\displaystyle 5

\displaystyle -7

\displaystyle 7

\displaystyle -3

\displaystyle -6

Correct answer:

\displaystyle -7

Explanation:

When dividing a negative number and a positive number, our answer is negative. Divide normally.

\displaystyle \frac{42}{-6}=\frac{7\cdot 6}{-6}=-7

Answer is \displaystyle -7.

Example Question #55 : Negative Numbers

\displaystyle -162/-27

Possible Answers:

\displaystyle -1

\displaystyle -6

\displaystyle 13

\displaystyle 8

\displaystyle 6

Correct answer:

\displaystyle 6

Explanation:

When dividing two negative numbers, our answer is positive. Divide normally.

\displaystyle \frac{-162}{-27}=\frac{-27\cdot 6}{-27}=6

Answer is \displaystyle 6.

Example Question #72 : Negative Numbers

Solve:

\displaystyle -90\div15

Possible Answers:

\displaystyle 7

\displaystyle 8

\displaystyle -6

\displaystyle 6

\displaystyle -8

Correct answer:

\displaystyle -6

Explanation:

When dividing a negative number and a positive number, our answer is negative. Divide normally. Answer is \displaystyle -6.

Example Question #421 : Grade 7

Solve:

\displaystyle -144\div-6

Possible Answers:

\displaystyle -12

\displaystyle 14

\displaystyle 24

\displaystyle 12

\displaystyle -24

Correct answer:

\displaystyle 24

Explanation:

When dividing two negative numbers, the answer is positive. Then divide normally. Answer is \displaystyle 24.

Example Question #422 : Grade 7

\displaystyle 946\div-11

Possible Answers:

\displaystyle 106

\displaystyle -76

\displaystyle -91

\displaystyle 96

\displaystyle -86

Correct answer:

\displaystyle -86

Explanation:

\displaystyle 946\div-11 When dividing with a negative number, our answer is negative.

Answer is \displaystyle -86.

Example Question #423 : Grade 7

\displaystyle -1000\div-25

Possible Answers:

\displaystyle -40

\displaystyle 50

\displaystyle -50

\displaystyle 40

\displaystyle -44

Correct answer:

\displaystyle 40

Explanation:

\displaystyle -1000\div-25 When dividing with two negative numbers, our answer is positive.

Answer is \displaystyle 40

Example Question #424 : Grade 7

Solve:

\displaystyle -90\div-6

Possible Answers:

\displaystyle 30

\displaystyle -84

\displaystyle 15

\displaystyle -96

\displaystyle -15

Correct answer:

\displaystyle 15

Explanation:

When dividing with two negative values, the answer becomes positive. Then we just divide \displaystyle 90 by \displaystyle 6, which equals \displaystyle 15. The answer is \displaystyle +15 or \displaystyle 15

Example Question #241 : The Number System

Solve:

\displaystyle -18\div6

Possible Answers:

\displaystyle 4

\displaystyle -12

\displaystyle -3

\displaystyle 3

\displaystyle 12

Correct answer:

\displaystyle -3

Explanation:

When dividing with negative numbers, we count the number of negative numbers. We have one so that means the answer is negative. So the quotient is \displaystyle -3

Learning Tools by Varsity Tutors