Common Core: Kindergarten Math : Add and Subtract Within 5: CCSS.Math.Content.K.OA.A.5

Study concepts, example questions & explanations for Common Core: Kindergarten Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Add And Subtract Within 5: Ccss.Math.Content.K.Oa.A.5

\(\displaystyle \frac{\begin{array}[b]{r}5\\ -\ 3\end{array}}{ \ \ \ \space?}\)

Possible Answers:

\(\displaystyle 1\)

\(\displaystyle 2\)

\(\displaystyle 0\)

Correct answer:

\(\displaystyle 2\)

Explanation:

To subtract we can count backwards. Start at \(\displaystyle 5\) and count back \(\displaystyle 3\).

\(\displaystyle 5, 4, 3, 2\)

\(\displaystyle \frac{\begin{array}[b]{r}5\\ -\ 3\end{array}}{ \ \ \ \space2}\)

Example Question #101 : Understanding Addition And Subtraction

\(\displaystyle \frac{\begin{array}[b]{r}4\\ -\ 1\end{array}}{ \ \ \ \space?}\)

Possible Answers:

\(\displaystyle 6\)

\(\displaystyle 5\)

\(\displaystyle 3\)

Correct answer:

\(\displaystyle 3\)

Explanation:

To subtract we can count backwards. Start at \(\displaystyle 4\) and count back \(\displaystyle 1.\)

\(\displaystyle 4, 3\)

\(\displaystyle \frac{\begin{array}[b]{r}4\\ -\ 1\end{array}}{ \ \ \ \space3}\)

Example Question #2 : Add And Subtract Within 5: Ccss.Math.Content.K.Oa.A.5

\(\displaystyle \frac{\begin{array}[b]{r}5\\ -\ 2\end{array}}{ \ \ \ \space ?}\)

Possible Answers:

\(\displaystyle 3\)

\(\displaystyle 2\)

\(\displaystyle 4\)

Correct answer:

\(\displaystyle 3\)

Explanation:

To subtract we can count backwards. Start at \(\displaystyle 5\) and count back \(\displaystyle 2\).

\(\displaystyle 5, 4, 3\)

\(\displaystyle \frac{\begin{array}[b]{r}5\\ -\ 2\end{array}}{ \ \ \ \space 3}\)

Example Question #3 : Add And Subtract Within 5: Ccss.Math.Content.K.Oa.A.5

\(\displaystyle \frac{\begin{array}[b]{r}3\\ -\ 2\end{array}}{ \ \ \ \space ?}\)

Possible Answers:

\(\displaystyle 1\)

\(\displaystyle 2\)

\(\displaystyle 3\)

Correct answer:

\(\displaystyle 1\)

Explanation:

To subtract we can count backwards. Start at \(\displaystyle 3\) and count back \(\displaystyle 2\).

\(\displaystyle 3, 2, 1\)

\(\displaystyle \frac{\begin{array}[b]{r}3\\ -\ 2\end{array}}{ \ \ \ \space 1}\)

Example Question #104 : Understanding Addition And Subtraction

\(\displaystyle \frac{\begin{array}[b]{r}2\\ -\ 2\end{array}}{ \ \ \ \space ?}\)

Possible Answers:

\(\displaystyle 1\)

\(\displaystyle 0\)

\(\displaystyle 2\)

Correct answer:

\(\displaystyle 0\)

Explanation:

To subtract we can count backwards. Start at \(\displaystyle 2\) and count back \(\displaystyle 2\).

\(\displaystyle 2, 1, 0\)

\(\displaystyle \frac{\begin{array}[b]{r}2\\ -\ 2\end{array}}{ \ \ \ \space 0}\)

Example Question #105 : Understanding Addition And Subtraction

\(\displaystyle \frac{\begin{array}[b]{r}4\\ -\ 3\end{array}}{ \ \ \ \space ?}\)

Possible Answers:

\(\displaystyle 0\)

\(\displaystyle 2\)

\(\displaystyle 1\)

Correct answer:

\(\displaystyle 1\)

Explanation:

To subtract we can count backwards. Start at \(\displaystyle 4\) and count back \(\displaystyle 3\).

\(\displaystyle 4, 3, 2, 1,\)

\(\displaystyle \frac{\begin{array}[b]{r}4\\ -\ 3\end{array}}{ \ \ \ \space 1}\)

Example Question #106 : Understanding Addition And Subtraction

\(\displaystyle \frac{\begin{array}[b]{r}5\\ -\ 4\end{array}}{ \ \ \ \space ?}\)

Possible Answers:

\(\displaystyle 1\)

\(\displaystyle 2\)

\(\displaystyle 3\)

Correct answer:

\(\displaystyle 1\)

Explanation:

To subtract we can count backwards. Start at \(\displaystyle 5\) and count back \(\displaystyle 4\).

\(\displaystyle 5, 4, 3, 2, 1\)

\(\displaystyle \frac{\begin{array}[b]{r}5\\ -\ 4\end{array}}{ \ \ \ \space 1}\)

Example Question #107 : Understanding Addition And Subtraction

\(\displaystyle \frac{\begin{array}[b]{r}4\\ -\ 2\end{array}}{ \ \ \ \space ?}\)

Possible Answers:

\(\displaystyle 3\)

\(\displaystyle 2\)

\(\displaystyle 1\)

Correct answer:

\(\displaystyle 2\)

Explanation:

To subtract we can count backwards. Start at \(\displaystyle 4\) and count back \(\displaystyle 2\).

\(\displaystyle 4, 3, 2\)

\(\displaystyle \frac{\begin{array}[b]{r}4\\ -\ 2\end{array}}{ \ \ \ \space 2}\)

Example Question #108 : Understanding Addition And Subtraction

\(\displaystyle \frac{\begin{array}[b]{r}3\\ -\ 3\end{array}}{ \ \ \ \space ?}\)

Possible Answers:

\(\displaystyle 0\)

\(\displaystyle 1\)

\(\displaystyle 2\)

Correct answer:

\(\displaystyle 0\)

Explanation:

To subtract we can count backwards. Start at \(\displaystyle 3\) and count back \(\displaystyle 3\).

\(\displaystyle 3,2,1,0\)

\(\displaystyle \frac{\begin{array}[b]{r}3\\ -\ 3\end{array}}{ \ \ \ \space 0}\)

Example Question #109 : Understanding Addition And Subtraction

\(\displaystyle \frac{\begin{array}[b]{r}1\\ -\ 1\end{array}}{ \ \ \ \space ?}\)

Possible Answers:

\(\displaystyle 1\)

\(\displaystyle 0\)

\(\displaystyle 2\)

Correct answer:

\(\displaystyle 0\)

Explanation:

To subtract we can count backwards. Start at \(\displaystyle 1\) and count back \(\displaystyle 1\).

\(\displaystyle 1,0\)

\(\displaystyle \frac{\begin{array}[b]{r}1\\ -\ 1\end{array}}{ \ \ \ \space 0}\)

Learning Tools by Varsity Tutors