GED Math : Scientific Notation

Study concepts, example questions & explanations for GED Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Scientific Notation

Write the following number in scientific notation:

\displaystyle 74,627

Possible Answers:

\displaystyle \small 746.27\times 10^2

\displaystyle \small 7.4627\times 10^5

\displaystyle \small 74.627\times 10^3

\displaystyle \small 7.4627\times 10^4

Correct answer:

\displaystyle \small 7.4627\times 10^4

Explanation:

Scientific notation is written in the form \displaystyle \small a\times 10^b.

In this equation, to go from standard to scientific notation, the decimal is shifted four places to the left.

\displaystyle \small 74627=7.4627\times 10^4

Example Question #2 : Scientific Notation

Write the following number in standard notation:
\displaystyle \small 3.14\times10^{-3}

Possible Answers:

\displaystyle \small 3140

\displaystyle \small 31400

\displaystyle \small 0.0314

\displaystyle \small 0.00314

Correct answer:

\displaystyle \small 0.00314

Explanation:

When calculating standard notation from scientific notation, if the exponent is negative, the decimal point must move that number of spaces to the left. If the exponent is positive, the decimal point must move that number of spaces to the right. In this problem, the exponent is negative, therefore we must move the decimal three places to the left:

\displaystyle \small 3.14\times 10^{-3}=0.00314

Example Question #3 : Scientific Notation

Write the following number in scientific notation.

\displaystyle 834,538

Possible Answers:

\displaystyle 8.34538*10^{4}

\displaystyle 8.34538*10^{-5}

\displaystyle 8.34538*10

\displaystyle 8.34538*10^{5}

\displaystyle 8.34538*10^{3}

Correct answer:

\displaystyle 8.34538*10^{5}

Explanation:

A number that is wrtiten in scientific notation includes the number with a decimal point after the first number \displaystyle (8.34538) and  \displaystyle *10^{x}, where \displaystyle x is the number of times you need to move the decimal point.

So, if you write \displaystyle 100 in scientific notation, it would be: \displaystyle 1*10^{2}, which is equivalent to \displaystyle 1*100. This shows that you need to move the decimal point two places to the right so it equals \displaystyle 100. Similarly, \displaystyle .001 would be \displaystyle 1*10^{-3}, which is equivalent \displaystyle 1*.001, where you move the decimal point three places to the left.

\displaystyle 834,538 becomes \displaystyle 8.34538*10^{5}, which is equivalent \displaystyle 8.34538*100000. You would move the decimal point five places to the right to go back to \displaystyle 834,538.

Example Question #4 : Scientific Notation

Write the following number in scientific notation.

\displaystyle .0025

Possible Answers:

\displaystyle 2.5*10^{3}

\displaystyle 2.5*10^{-2}

\displaystyle 2.5*10^{2}

\displaystyle .25*10^{-2}

\displaystyle 2.5*10^{-3}

Correct answer:

\displaystyle 2.5*10^{-3}

Explanation:

A number that is wrtiten in scientific notation includes the number with a decimal point after the first number \displaystyle (2.5) and  \displaystyle *10^{x}, where \displaystyle x is the number of times you need to move the decimal point.

So, if you write \displaystyle 100 in scientific notation, it would be: \displaystyle 1*10^{2}, which is equivalent to \displaystyle 1*100. This shows that you need to move the decimal point two places to the right so it equals \displaystyle 100. Similarly, \displaystyle .001 would be \displaystyle 1*10^{-3}, which is equivalent \displaystyle 1*.001, where you move the decimal point three places to the left.

\displaystyle .0025 becomes \displaystyle 2.5*10^{-3}, which is equivalent \displaystyle 2.5*.001. You would move the decimal point three places to the left to go back to \displaystyle .0025.

Example Question #3 : Scientific Notation

Multiply and express the product in scientific notation:

\displaystyle \left ( 4.5 \times 10 ^{7}\right ) \left (3.2 \times 10 ^{4} \right )

Do not use a calculator.

Possible Answers:

\displaystyle 14.4 \times 10 ^{28}

\displaystyle 1.44 \times 10 ^{29}

\displaystyle 1.44 \times 10 ^{12}

\displaystyle 14.4 \times 10 ^{11}

Correct answer:

\displaystyle 1.44 \times 10 ^{12}

Explanation:

Apply the exponent properties:

\displaystyle \left ( 4.5 \times 10 ^{7}\right ) \left (3.2 \times 10 ^{4} \right )

\displaystyle = 4.5 \cdot 3.2 \cdot 10 ^{7} \cdot 10 ^{4}

\displaystyle = 14.4 \cdot 10 ^{7+4}

\displaystyle = 14.4 \cdot 10 ^{11}

\displaystyle = 1.44\cdot 10 ^{1} \cdot 10 ^{11}

\displaystyle = 1.44\cdot 10 ^{1+11}

\displaystyle = 1.44\cdot 10 ^{12}

or, more correctly, \displaystyle 1.44 \times 10 ^{12}.

Example Question #4 : Scientific Notation

Divide, and express the quotient in scientific notation.

\displaystyle \left ( 4.8 \times 10^{-14} \right )\div \left (8 \times 10 ^{-7} \right )

Do not use a calculator.

Possible Answers:

\displaystyle 0.6 \times 10 ^{2}

\displaystyle 6 \times 10 ^{-8}

\displaystyle 6 \times 10 ^{1}

\displaystyle 0.6 \times 10 ^{-7}

Correct answer:

\displaystyle 6 \times 10 ^{-8}

Explanation:

This can be most easily solved by writing the expression in fraction form, then applying the rules of exponents as follows:

\displaystyle \left ( 4.8 \times 10^{-14} \right )\div \left (8 \times 10 ^{-7} \right )

\displaystyle = \frac{4.8 \times 10^{-14}}{8 \times 10 ^{-7} }

\displaystyle = \frac{4.8 }{8 } \cdot \frac{ 10^{-14}}{ 10 ^{-7} }

\displaystyle =0.6 \cdot 10^{-14 -(-7)}

\displaystyle =0.6 \cdot 10^{-14 +7}

\displaystyle =0.6 \cdot 10^{- 7}

\displaystyle =6 \cdot 10 ^{-1} \cdot 10^{- 7}

\displaystyle =6 \cdot 10 ^{-1+ (-7)}

\displaystyle =6 \cdot 10 ^{-8},

or, more correctly written, \displaystyle 6 \times 10 ^{-8}.

Example Question #5 : Scientific Notation

Divide, and express the quotient in scientific notation.

\displaystyle \left ( 2.7 \times 10^{13} \right )\div \left (3 \times 10 ^{8} \right )

Do not use a calculator.

Possible Answers:

\displaystyle 9 \times10^{5}

\displaystyle 9 \times10^{4}

\displaystyle 0. 9 \times10^{6}

\displaystyle 0. 9 \times10^{5}

Correct answer:

\displaystyle 9 \times10^{4}

Explanation:

This can be most easily solved by writing the expression in fraction form, then applying the rules of exponents as follows:

\displaystyle \left ( 2.7 \times 10^{13} \right )\div \left (3 \times 10 ^{8} \right )

\displaystyle = \frac{ 2.7 \times 10^{13}}{3 \times 10 ^{8}}

\displaystyle = \frac{ 2.7 }{3 } \cdot \frac{ 10^{13}}{ 10 ^{8}}

\displaystyle = 0.9 \cdot 10^{13-8}

\displaystyle = 0.9 \cdot 10^{5}

\displaystyle = 9 \cdot 10 ^{-1}\cdot 10^{5}

\displaystyle = 9 \cdot 10^{- 1 + 5}

\displaystyle = 9 \cdot 10^{4}

or \displaystyle 9 \times10^{4}.

Example Question #6 : Scientific Notation

Which of the following values is equivalent to,

\displaystyle 3.78 \times 10^{-4}?

Possible Answers:

\displaystyle 37,800

\displaystyle 0.000378

\displaystyle 378

\displaystyle 0.00378

Correct answer:

\displaystyle 0.000378

Explanation:

When multiplying a decimal using base 10 with a negative exponent, the method is to move the decimal point to the left the amount of spaces which is indicated by the exponent.  In this example, you will move the decimal point four spaces to the left because the exponent is \displaystyle -4. Because there is only one decimal place to the left of the decimal indicated by the whole number 3, you will need to annex or add three zeroes to the left of the three as place holders, thus making the correct answer \displaystyle .000378 

Example Question #111 : Ged Math

How many significant figures are present in the scientific notation form?  

\displaystyle 2.50 \times 10^5

Possible Answers:

\displaystyle 5

\displaystyle 6

\displaystyle 2

\displaystyle 3

\displaystyle 4

Correct answer:

\displaystyle 3

Explanation:

The significant figures will only count the number \displaystyle 2.50.  

All non-zero digits are significant figures, and the values after the decimal place are also considered as significant digits.

Do NOT expand the term to \displaystyle 250,000 or the significant digits will be lost.

The answer is:  \displaystyle 3

Example Question #6 : Scientific Notation

Which of the following numbers can be written in scientific notation as \displaystyle 5.7 \times 10^{-6} ?

Possible Answers:

\displaystyle 57,000,000

\displaystyle 5,700,000

\displaystyle 0.000057

\displaystyle 0.0000057

Correct answer:

\displaystyle 0.0000057

Explanation:

To convert \displaystyle 5.7 \times 10^{-6} to standard notation, first note that

\displaystyle 10^{-6} = 0.000001

Multiply this by 5.7:

\displaystyle 5.7 \times 10^{-6} = 5.7 \times 0.000001 = 0.0000057,

the correct choice.

Learning Tools by Varsity Tutors