GMAT Math : Powers & Roots of Numbers

Study concepts, example questions & explanations for GMAT Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1581 : Gmat Quantitative Reasoning

Solve: \frac{(0.5)^{6}}{(0.5)^{9}}\(\displaystyle \frac{(0.5)^{6}}{(0.5)^{9}}\)

Possible Answers:

\dpi{100} \small 8\(\displaystyle \dpi{100} \small 8\)

\dpi{100} \small 0.125\(\displaystyle \dpi{100} \small 0.125\)

\dpi{100} \small 125\(\displaystyle \dpi{100} \small 125\)

\dpi{100} \small 4\(\displaystyle \dpi{100} \small 4\)

\dpi{100} \small 0.25\(\displaystyle \dpi{100} \small 0.25\)

Correct answer:

\dpi{100} \small 8\(\displaystyle \dpi{100} \small 8\)

Explanation:

Solve\dpi{100} \small : \frac{0.5^{6}}{0.5^{9}} = 0.5^{6-9}= 0.5^{-3}=\frac{1}{0.5^{3}}=\frac{1}{0.125} = 8\(\displaystyle \dpi{100} \small : \frac{0.5^{6}}{0.5^{9}} = 0.5^{6-9}= 0.5^{-3}=\frac{1}{0.5^{3}}=\frac{1}{0.125} = 8\)

Example Question #1581 : Problem Solving Questions

\frac{x^{2}y^{3}z^{4}}{x^{3}yz^{3}} =\(\displaystyle \frac{x^{2}y^{3}z^{4}}{x^{3}yz^{3}} =\)

Possible Answers:

\frac{yz}{x}\(\displaystyle \frac{yz}{x}\)

\frac{y^{2}z}{x}\(\displaystyle \frac{y^{2}z}{x}\)

\frac{1}{x^{2}}\(\displaystyle \frac{1}{x^{2}}\)

\frac{yz}{x^{2}}\(\displaystyle \frac{yz}{x^{2}}\)

\dpi{100} \small cannot\ be\ simplified\(\displaystyle \dpi{100} \small cannot\ be\ simplified\)

Correct answer:

\frac{y^{2}z}{x}\(\displaystyle \frac{y^{2}z}{x}\)

Explanation:

\frac{x^{2}y^{3}z^{4}}{x^{3}yz^{3}} = \frac{y^{3-1}z^{4-3}}{x^{3-2}} = \frac{y^{2}z}{x}\(\displaystyle \frac{x^{2}y^{3}z^{4}}{x^{3}yz^{3}} = \frac{y^{3-1}z^{4-3}}{x^{3-2}} = \frac{y^{2}z}{x}\)

Example Question #3 : Understanding Powers And Roots

Solve: \small (\sqrt{5}+\sqrt{4})^2\(\displaystyle \small (\sqrt{5}+\sqrt{4})^2\)

Possible Answers:

\small 9\(\displaystyle \small 9\)

\small 20\(\displaystyle \small 20\)

\small 9+4\sqrt5\(\displaystyle \small 9+4\sqrt5\)

\small 20+4\sqrt5\(\displaystyle \small 20+4\sqrt5\)

Correct answer:

\small 9+4\sqrt5\(\displaystyle \small 9+4\sqrt5\)

Explanation:

First, FOIL:

\small (\sqrt5+\sqrt4)^2=(\sqrt5+\sqrt4)(\sqrt5+\sqrt4)=5+\sqrt20+\sqrt20+4\(\displaystyle \small (\sqrt5+\sqrt4)^2=(\sqrt5+\sqrt4)(\sqrt5+\sqrt4)=5+\sqrt20+\sqrt20+4\)

\small =9+2\sqrt20\(\displaystyle \small =9+2\sqrt20\)

Factor out \small \sqrt4\(\displaystyle \small \sqrt4\)

\small =9+4\sqrt5\(\displaystyle \small =9+4\sqrt5\)

Example Question #4 : Understanding Powers And Roots

Solve: \small \frac{10^9-10^7}{99}\(\displaystyle \small \frac{10^9-10^7}{99}\)

Possible Answers:

\small 10^7\(\displaystyle \small 10^7\)

\small \frac{10^7}{99}\(\displaystyle \small \frac{10^7}{99}\)

\small \frac{10}{99}\(\displaystyle \small \frac{10}{99}\)

\small \frac{100}{99}\(\displaystyle \small \frac{100}{99}\)

Correct answer:

\small 10^7\(\displaystyle \small 10^7\)

Explanation:

First factor. \small \frac{10^9-10^7}{99}\ =\ \frac{(10^7)(10^2-1)}{99}\(\displaystyle \small \frac{10^9-10^7}{99}\ =\ \frac{(10^7)(10^2-1)}{99}\)

Simplify. \small \frac{(10^7)(10^2-1)}{99}\ =\ \frac{(10^7)(100-1)}{99}\ =\ \frac{(10^7)(99)}{99}\ =\ 10^7\(\displaystyle \small \frac{(10^7)(10^2-1)}{99}\ =\ \frac{(10^7)(100-1)}{99}\ =\ \frac{(10^7)(99)}{99}\ =\ 10^7\)

Example Question #1 : Powers & Roots Of Numbers

If \small x^2=8\(\displaystyle \small x^2=8\), what is \small x^4?\(\displaystyle \small x^4?\)

Possible Answers:

\(\displaystyle 16\)

\(\displaystyle 32\)

\(\displaystyle 64\)

\(\displaystyle 124\)

Correct answer:

\(\displaystyle 64\)

Explanation:

\small x^4=(x^2)^2=(8)^2=64\(\displaystyle \small x^4=(x^2)^2=(8)^2=64\)

Example Question #6 : Understanding Powers And Roots

Evaluate: \(\displaystyle 11^{100} - 11^{99}\)

Possible Answers:

\(\displaystyle 10 \cdot 11^{99}\)

\(\displaystyle 11^{98}\)

\(\displaystyle 10 \cdot 11^{98}\)

\(\displaystyle 11\)

\(\displaystyle 11^{99}\)

Correct answer:

\(\displaystyle 10 \cdot 11^{99}\)

Explanation:

\(\displaystyle 11^{100} - 11^{99} = 11 \cdot 11^{99} - 1\cdot 11^{99} = (11-1) \cdot 11^{99} = 10 \cdot 11^{99}\)

Example Question #1 : Powers & Roots Of Numbers

Simplify this expression as much as possible:

\(\displaystyle \sqrt{9x}+\sqrt{12x}+\sqrt{27x}\)

Possible Answers:

\(\displaystyle 3\sqrt{x}+5\sqrt{3x}\)

\(\displaystyle \sqrt{3x}+\sqrt{15x}\)

\(\displaystyle 8\sqrt{3x}\)

\(\displaystyle 8\sqrt{x}\)

The expression cannot be simplified further

Correct answer:

\(\displaystyle 3\sqrt{x}+5\sqrt{3x}\)

Explanation:

\(\displaystyle \sqrt{9x}+\sqrt{12x}+\sqrt{27x}\)

\(\displaystyle =\sqrt{9}\cdot \sqrt{x}+\sqrt{4}\cdot \sqrt{3x}+\sqrt{9}\cdot \sqrt{3x}\)

\(\displaystyle =3 \sqrt{x}+2 \sqrt{3x}+3 \sqrt{3x}\)

\(\displaystyle =3 \sqrt{x}+\left (2 +3 \right )\sqrt{3x}\)

\(\displaystyle =3 \sqrt{x}+5\sqrt{3x}\)

Example Question #7 : Understanding Powers And Roots

If the side length of a cube is tripled, how does the volume of the cube change?

Possible Answers:

Volume becomes 27 times larger.

The volume doesn't change.

Volume becomes 3 times larger.

Not enough informatin is given.

Volume becomes 9 times larger.

Correct answer:

Volume becomes 27 times larger.

Explanation:

The equation for the volume of a cube is \(\displaystyle L^{3}\).  If the length is tripled, it becomes \(\displaystyle (3L)^{3}\), and \(\displaystyle 3^{3}=27\), so the volume increases by 27 times the original size.

Example Question #5 : Understanding Powers And Roots

Simplify \(\displaystyle \sqrt{\sqrt[4]{\sqrt[3]{4^{2}}^{2}}^{3}}\)

Possible Answers:

\(\displaystyle 2\)

\(\displaystyle 4\)

\(\displaystyle 64\)

\(\displaystyle 32\)

\(\displaystyle 8\)

Correct answer:

\(\displaystyle 2\)

Explanation:

This can either be done by brute force (slow) or by recognizing the properties of roots and exponents (fast).  Roots are simply fractional exponents: \(\displaystyle \sqrt{x}=x^{\frac{1}{2}}\), \(\displaystyle \sqrt[3]{x}=x^{\frac{1}{3}}\), etc. so they can be done in any order.

 

So we see a cube root, we can immediately cancel that with the exponent of 3. taking us from here: \(\displaystyle \sqrt{\sqrt[4]{\sqrt[3]{4^{2}}^{2}}^{3}}\) to \(\displaystyle \sqrt{\sqrt[4]{(4^2)^2}}\).  We now simplify \(\displaystyle (4^2)^2 = 4^4\) to get \(\displaystyle \sqrt{\sqrt[4]{(4^4)}} = \sqrt4 = 2\)

Example Question #10 : Understanding Powers And Roots

In the sequence 1, 3, 9, 27, 81, … , each term after the first is three times the previous term. What is the sum of the 9th and 10th terms in the sequence?

Possible Answers:

\(\displaystyle (3)^{10}\)

\(\displaystyle 4(3)^{8}\)

\(\displaystyle 4(3)^{9}\)

\(\displaystyle 6(3)^{9}\)

\(\displaystyle 6(3)^{8}\)

Correct answer:

\(\displaystyle 4(3)^{8}\)

Explanation:

We can rewrite the sequence as \(\displaystyle (3)^{0}\), \(\displaystyle (3)^{1}\), \(\displaystyle (3)^{2}\), \(\displaystyle (3)^{3}\), \(\displaystyle (3)^{4}\), … ,

and we can see that the 9th term in the sequence is \(\displaystyle (3)^{8}\) and the 10th term in the sequence is \(\displaystyle (3)^{9}\). Therefore, the sum of the 9th and 10th terms would be

\(\displaystyle 3^{8}+3^{9}=3^{8}\cdot \left ( 1+3 \right )=4\cdot 3^{8}\)

Tired of practice problems?

Try live online GMAT prep today.

1-on-1 Tutoring
Live Online Class
1-on-1 + Class
Learning Tools by Varsity Tutors