GMAT Math : Measurement Problems

Study concepts, example questions & explanations for GMAT Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Understanding Measurement

Lines

Note: Figure NOT drawn to scale.

\displaystyle AB = BC

\displaystyle CD = BC + 6

\displaystyle DE = \frac{1}{2}\left ( CD \right )

Give \displaystyle AE in terms of \displaystyle DE.

Possible Answers:

\displaystyle AE = 6 (DE) - 6

\displaystyle AE = 7 (DE) + 6

\displaystyle AE = 6 (DE) + 6

\displaystyle AE = 7(DE) -12

\displaystyle AE = 6 (DE) -12

Correct answer:

\displaystyle AE = 7(DE) -12

Explanation:

Since \displaystyle DE = \frac{1}{2} (CD)\displaystyle CD = 2 (DE)

Since \displaystyle CD = BC + 6\displaystyle BC = CD - 6 = 2 \cdot DE - 6, and, subsequently, \displaystyle AB = 2 (DE) - 6

 

\displaystyle AE = AB + BC + CD + DE

\displaystyle = [2 \left (DE \right ) -6 ]+ [2 \left (DE \right ) -6 ] + 2 \left (DE \right ) + DE

\displaystyle = 2 \left (DE \right )+ 2 \left (DE \right ) + 2 \left (DE \right ) + 1\left ( DE \right ) -6 -6

\displaystyle = 7 \left (DE \right ) - 12

 

Example Question #2 : Understanding Measurement

Big Bob the, 8-feet tall warehouse foreman is stacking uniformly sized boxes of goods in the warehouse. Big Bob notices that he is the exact same height as 3 boxes stacked on top of each other. If the warehouse ceiling is 55 feet high, what is the maximum number of boxes that he can stack on top of one another before he hits the ceiling?

Possible Answers:

\displaystyle 18

\displaystyle 20

\displaystyle 19

\displaystyle 21

\displaystyle 17

Correct answer:

\displaystyle 20

Explanation:

To find the height of each box set the 3 boxes equal to the height of Big Bob. So, let \displaystyle x be the height of each box. Then,

\displaystyle 3x=8\ feet or \displaystyle x=\frac{8\text{ feet}}{3}= 2.66\text{ feet}

Therefore to find the maximum number of boxes that fit under the ceiling, we divide the ceiling height by the height of each box. So,

\displaystyle \frac{55'}{2.66'} = 20.68 or 20 whole boxes would fit under the ceiling.

Example Question #1 : Measurement Problems

If the length and width of a rectangular room is increased by 20%, what percent has the area increased by?

Possible Answers:

Not sufficient information

\displaystyle 20\%

\displaystyle 44\%

\displaystyle 40\%

Correct answer:

\displaystyle 44\%

Explanation:

\displaystyle Original\ area=l\cdot w

\displaystyle New\ area=1.2l\cdot 1.2w

\displaystyle New\ area=1.44\cdot l\cdot w

 

\displaystyle 1.44-1=0.44

\displaystyle .44\cdot *100=44\%

Example Question #42 : Word Problems

Two bedrooms have the same area. Bedroom A is \displaystyle 6' by \displaystyle 8' and the width of Bedroom B is \displaystyle 10'. Find the length of Bedroom B.

Possible Answers:

\displaystyle 5.2'

\displaystyle 6'

\displaystyle 4'

\displaystyle 4.8'

Correct answer:

\displaystyle 4.8'

Explanation:

Area of Bedroom A is equal to area of Bedroom B, therefore:

\displaystyle 6'*8'\displaystyle =10'*l

\displaystyle l=\frac{6'*8'}{10'}

\displaystyle l\displaystyle =4.8'

Example Question #5 : Measurement Problems

Restate 200 feet per second in miles per hour (nearest whole number).

Possible Answers:

\displaystyle 105 \textrm{ mi / hr}

\displaystyle 293 \textrm{ mi / hr}

\displaystyle 272 \textrm{ mi / hr}

\displaystyle 146 \textrm{ mi / hr}

\displaystyle 136 \textrm{ mi / hr}

Correct answer:

\displaystyle 136 \textrm{ mi / hr}

Explanation:

One mile is equal to 5,280 feet, and one hour is equal to 3,600 seconds, The speed can be converted as follows:

\displaystyle \frac{200 \textrm{ ft}}{1\textrm{ sec}} = \frac{200 \textrm{ ft } \times 3,600 \textrm{ sec / hr} }{1\textrm{ sec} \times 5,280 \textrm{ ft / mi } }

\displaystyle = 136 \frac{4}{11} \textrm{ mi / hr}

or, rounded, 136 miles per hour.

 

Example Question #5 : Measurement Problems

A unit of distance used in marine navigation is the nautical mile; what we call a mile on land is also referred to as a statute mile.

One nautical mile is defined as 1,852 meters. Using the conversion factor 1.609 kilometers = 1 statute mile, how many statute miles are equal to 1,000 nautical miles (nearest whole number)?

Possible Answers:

2,980 statute miles

1,609 statute miles

869 statute miles

622 statute miles

1,151 statute miles

Correct answer:

1,151 statute miles

Explanation:

1,000 nautical miles are equal to \displaystyle 1,852 \times 1,000 = 1,852,000 meters, or 

1 statute mile is equal to 1.609 kilometers, or 1,609 meters; divide 1,852,000 meters by 1,609 meters per statute miles to get

\displaystyle 1,852,000 \div 1,609 \approx 1,151 statute miles, the equivalent of 1,000 nautical miles.

Example Question #6 : Measurement Problems

A furlong is a unit of length used in horse racing; it is equal to one-eighth of a mile. To the nearest tenth, how many meters are equal to a furlong if 1.609 kilometers are equal to a mile?

Possible Answers:

\displaystyle 201.1 \textrm{ m}

\displaystyle 20.1 \textrm{ m}

\displaystyle 776.9 \textrm{ m}

\displaystyle 128.7 \textrm{ m}

\displaystyle 77.7\textrm{ m}

Correct answer:

\displaystyle 201.1 \textrm{ m}

Explanation:

1.609 kilometers, or 1,609 meters, are equal to a mile. One furlong, or one eighth of a mile, is equal to one eighth of 1,609 meters, or

\displaystyle 1,609 \cdot \frac{ 1}{8} = 1,609 \cdot 0.125 = 201.125 \approx 201.1 meters.

Example Question #2 : Measurement Problems

A baseball travels at a rate of \displaystyle 75\ ft/sec.  How long does it take to reach a fence that is \displaystyle 110\ yards away?

Possible Answers:

\displaystyle 1.47\ seconds

\displaystyle 4.40\ seconds

\displaystyle 3.75\ seconds

\displaystyle 5.30\ seconds

\displaystyle 5\ seconds

Correct answer:

\displaystyle 4.40\ seconds

Explanation:

The first step is to convert the distance into feet:

 \displaystyle 110\ yds * \frac{3\ ft}{1\ yd} = 330\ ft.

Then, divide the distance by the baseball's rate of travel:

\displaystyle \frac{330 ft}{75\ ft/sec} = 4.4\ sec.

Example Question #3 : Measurement Problems

It takes Jim 30 minutes to drive to work and 45 minutes to drive home from work.  What is Jim's average driving speed in miles per hour if Jim lives 25 miles from work?

Possible Answers:

\displaystyle 75\ mph

\displaystyle 40\ mph

 

\displaystyle 45\ mph

\displaystyle 50\ mph

\displaystyle 35\ mph

Correct answer:

\displaystyle 40\ mph

 

Explanation:

The formula to find the average speed is \displaystyle avg.\ speed = \frac{total\ distance}{total\ time}.

Since the question deals with miles per hour, the time must be converted to hours from minutes:

\displaystyle \frac{75\ min}{60\ min}= 1.25\ hours

Plugging the numbers into the equation gives \displaystyle \frac{50\ miles}{1.25\ hours}= 40\ mph.

Example Question #1 : Understanding Measurement

Restate 100 miles per hour in feet per second (rounded to the nearest whole number).

Possible Answers:

\displaystyle 74 \textrm{ ft/sec}

\displaystyle 49 \textrm{ ft/sec}

\displaystyle 147 \textrm{ ft/sec}

\displaystyle 68 \textrm{ ft/sec}

\displaystyle 136 \textrm{ ft/sec}

Correct answer:

\displaystyle 147 \textrm{ ft/sec}

Explanation:

One mile is equal to 5,280 feet, and one hour is equal to 3,600 seconds, The speed can be converted as follows:

\displaystyle \frac{100 \textrm{ mi}}{1\textrm{ hr}} = \frac{100 \textrm{ mi } \times 5,280 \textrm{ ft / mi } }{1\textrm{ hr} \times 3,600 \textrm{ sec / hr}}

\displaystyle = 146 \frac{2}{3} \textrm{ ft / sec }

 or, rounded, 147 feet per second.

Tired of practice problems?

Try live online GMAT prep today.

1-on-1 Tutoring
Live Online Class
1-on-1 + Class
Learning Tools by Varsity Tutors