All GRE Subject Test: Math Resources
Example Questions
Example Question #14 : Midpoint Riemann Sums
Solve the integral
using Simpson's rule with subintervals.
Simpson's rule is solved using the formula
where is the number of subintervals and is the function evaluated at the midpoint.
For this problem, .
The value of each approximation term is below.
The sum of all the approximation terms is therefore
Example Question #1 : Numerical Integration
Solve the integral
using Simpson's rule with subintervals.
Simpson's rule is solved using the formula
where is the number of subintervals and is the function evaluated at the midpoint.
For this problem, .
The value of each approximation term is below.
The sum of all the approximation terms is therefore
Example Question #3 : Numerical Approximation
Solve the integral
using Simpson's rule with subintervals.
Simpson's rule is solved using the formula
where is the number of subintervals and is the function evaluated at the midpoint.
For this problem, .
The value of each approximation term is below.
The sum of all the approximation terms is therefore
Example Question #21 : Midpoint Riemann Sums
Solve the integral
using Simpson's rule with subintervals.
Simpson's rule is solved using the formula
where is the number of subintervals and is the function evaluated at the midpoint.
For this problem, .
The value of each approximation term is below.
The sum of all the approximation terms is therefore
Example Question #12 : Midpoint Riemann Sums
Solve the integral
using the trapezoidal approximation with subintervals.
Trapezoidal approximations are solved using the formula
where is the number of subintervals and is the function evaluated at the midpoint.
For this problem, .
The value of each approximation term is below.
The sum of all the approximation terms is , therefore
Example Question #13 : Midpoint Riemann Sums
Solve the integral
using the trapezoidal approximation with subintervals.
Trapezoidal approximations are solved using the formula
where is the number of subintervals and is the function evaluated at the midpoint.
For this problem, .
The value of each approximation term is below.
The sum of all the approximation terms is , therefore
Example Question #5 : Numerical Integration
Solve the integral
using the trapezoidal approximation with subintervals.
Trapezoidal approximations are solved using the formula
where is the number of subintervals and is the function evaluated at the midpoint.
For this problem, .
The value of each approximation term is below.
The sum of all the approximation terms is , therefore
Example Question #1 : Numerical Integration
Solve the integral
using the trapezoidal approximation with subintervals.
Trapezoidal approximations are solved using the formula
where is the number of subintervals and is the function evaluated at the midpoint.
For this problem, .
The value of each approximation term is below.
The sum of all the approximation terms is , therefore
Example Question #1 : Numerical Integration
Evaluate using the Trapezoidal Rule, with n = 2.
1) n = 2 indicates 2 equal subdivisions. In this case, they are from 0 to 1, and from 1 to 2.
2) Trapezoidal Rule is:
3) For n = 2:
4) Simplifying:
Certified Tutor
Certified Tutor